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ABSTRACT 

Nicotine dependence and schizophrenia are two mental health disorders with remarkably high 

comorbidity. Cigarette smoking is particularly prevalent among schizophrenic patients and it 

is hypothesized to comprise a form of self-medication for relieving cognitive deficits in these 

patients. Emerging evidence suggests a role of the neurohypophysial peptide oxytocin in the 

modulation of drug addiction, as well as schizophrenia symptomology; however, the 

underlying mechanism remains unclear. Therefore, we sought to investigate the effects of 

chronic nicotine administration on oxytocin receptor (OTR) binding in the brain of a transgenic 

mouse model of schizophrenia that carries a bacterial artificial chromosome of the human 

G72/G30 locus (G72Tg). Female wild-type (WT) and heterozygous G72 transgenic CD-1 mice 

were treated with a chronic nicotine regimen (24 mg/kg/day, osmotic minipumps for 14 days) 

and quantitative autoradiographic mapping of oxytocin receptors was carried out in brains of 

these animals. OTR binding levels were higher in the cingulate cortex (CgCx), nucleus 

accumbens (Acb) and central amygdala (CeA) of saline treated G72Tg mice compared with 

WT control mice. Chronic nicotine administration reversed this upregulation in the CgCx and 

CeA. Interestingly, chronic nicotine administration induced an increase in OTR binding in the 

CeA of solely WT mice. These results indicate that nicotine administration normalizes the 

dysregulated central oxytocinergic system of this mouse model of schizophrenia and may 

contribute towards nicotine’s ability to modulate cognitive deficits which are common 

symptoms of schizophrenia.  

  



4 

 

INTRODUCTION 

Schizophrenia is a neuropsychiatric disorder, typically manifested during adolescence or 

early adulthood and is usually characterised by hallucinations, delusions, impaired cognitive 

function and emotional deficits (American Psychiatric Association, 2013). Impaired cognitive 

function in schizophrenia includes deficits in sensory gating (Adler et al., 1998), smooth 

pursuit eye movement (Olincy et al., 1998), working memory (Gold et al., 2006; Nuechterlein 

et al., 2008) and social cognition (Derntl & Habel, 2011).  

Converging lines of evidence indicate the presence of high comorbidity rates between 

nicotine dependence and schizophrenia; smoking prevalence among schizophrenics is 

estimated at 74-92%, compared with 35-54% for all psychiatric patients and 20% for the 

general population (see Adler et al., 1998; D'Souza & Markou, 2012). Nicotine has been shown 

to transiently ameliorate attention (Dépatie et al., 2002; Harris et al., 2004), working memory 

(Nuechterlein et al., 2004) and sensory gating (Adler et al., 1998; Olincy et al., 1998) deficits 

in schizophrenic patients, indicating a possible use of nicotine via smoking as a self-medication 

in these patients (Glassman, 1993; Kumari & Postma, 2005). By using the G72Tg mouse model 

of schizophrenia, we found that chronic nicotine administration was effective in restoring 

impaired prepulse inhibition, working memory, associative learning and social recognition in 

G72Tg mice further supporting the beneficial attributes of nicotine in modulating cognitive 

deficits symptoms of schizophrenia (Hambsch et al., 2014). Although the benefits of nicotine 

use in schizophrenia have been broadly studied, the neurobiology underlining this nicotine 

dependence-schizophrenia comorbidity remains unclear.  

There is emerging evidence suggesting that the central oxytocinergic system plays a 

key role in the psychopathology of both drug addiction, including nicotine dependence, and 

schizophrenia. Research into the underlying mechanisms of cognitive deficits associated with 

schizophrenia has revealed a key role of the oxytocinergic system, primarily due to its 
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modulatory role in social cognition (Stoop, 2012). In particular, intranasal oxytocin (OT) 

treatment in schizophrenic patients abolishes psychotic symptoms (Bujanow, 1974), reduces 

positive and negative symptoms of schizophrenia (Feifel et al., 2010) and improves social 

perception (Pedersen et al., 2011). Similarly, OT administration restores social behavior which 

is profoundly impaired in animal models of schizophrenia (Lee et al., 2007). Previous studies 

have also identified reduced plasma OT levels in schizophrenic patients (Walss-Bass et al., 

2013), suggesting a possible dysregulation of the oxytocinergic system in some schizophrenia-

related symptomology. Indeed, higher OT levels in the blood were directly correlated with 

reduced schizophrenia-related symptoms in women (Sasayama et al., 2012). Several OT 

receptor (OTR) single nucleotide polymorphisms (SNPs) have been associated with increased 

severity of various schizophrenia-like symptoms. In particular, rs2254298, rs53576 or 

rs237885 SNPs on the otr gene have all been associated with severe psychopathology and 

negative symptoms of schizophrenia (Montag et al., 2012). Overall, these studies provide 

evidence that the oxytocinergic system is likely to be involved in the underlying 

psychopathology of schizophrenia.  

In addition to schizophrenia, the OT system has been also widely implicated in drug 

addiction processes. Specifically, chronic administration of drugs of abuse such as cocaine 

(Sarnyai et al., 1992; Georgiou et al., 2015a), methamphetamine (Zanos et al., 2014b; 

Georgiou et al., 2016), morphine (Zanos et al., 2014a), alcohol (Silva et al., 2002) and nicotine 

(Zanos et al., 2015) induce alterations in the central OTR system. Moreover, prenatal combined 

treatment with alcohol and nicotine decreased OT levels (McMurray et al., 2008) and increased 

OTR binding in the brain of rats (Williams et al., 2009). Acute intravenous administration of 

nicotine has been shown to decrease OT content in the pituitary of rats (Russell & Chaudhury, 

1972), and systemic administration of OT abolished physical somatic symptoms of nicotine 

withdrawal in rat (Manbeck et al., 2014) and reduced cigarette consumption in daily smokers 
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(Van Hedger et al., 2018). There is ample evidence clearly demonstrating that OT 

administration can modulate addiction related behaviors (McGregor & Bowen, 2012; Zanos et 

al., 2017) and can prevent relapse (Zanos et al., 2014a; Georgiou et al., 2015b) and thus has 

been proposed as a novel treatment for drug addiction. Interestingly, due to the anxiolytic, 

antidepressant and prosocial properties of OT, there is particular interest in its potential efficacy 

in the treatment of mental health disorder comorbidities including addiction-depression 

comorbidity (Zanos et al., 2017). Nonetheless, the role of OT in addiction-schizophrenia 

comorbidity remains unclear.   

Genome-wide association studies have implicated the G72/G30 gene locus (13q32-

q34) in susceptibility to schizophrenia (for review see Drews et al., 2012). G72 is a primate-

specific gene encoding the G72 protein in humans, and a truncated form in non-human 

primates. The G72 protein deactivates D-amino acid oxidase (DAOA) (Sacchi et al., 2008) 

thus preventing the oxidation of D-serine, an activator of the NMDA glutamate receptor 

(Chumakov et al., 2002) by decreasing the glutamatergic signalling. Abnormalities in the 

glutamatergic system, particularly in the cortical regions of the brain, have been implicated in 

the pathophysiology of schizophrenia (for reviews see Olney & Farber, 1995; Adell et al., 

2012), and transgenic mice with decreased NMDA receptor levels display schizophrenia-like 

behavioral abnormalities (Mohn et al., 1999). 

To investigate the possible involvement of OT in the mechanism underlining nicotine 

dependence and schizophrenia comorbidity, we aimed to assess if OTR levels were 

dysregulated in the brains of the G72Tg mouse model of schizophrenia and whether chronic 

nicotine treatment was able to modulate such dysregulation. 
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METHODS 

Animals and chronic nicotine administration paradigm 

 WT and heterozygous G72Tg transgenic CD-1 mice were originally generated by Otte 

et. al., (2009), at the University of Bonn. The animals were individually housed, 12:12 h 

reversed light/dark-cycle, in a temperature-controlled environment with food and water 

available ad libidum. Female mice (16 G72Tg and 17 WT littermates, total 33 animals, 10-12 

weeks old, 31-35 grams) were administered with chronic saline (8 G72Tg, 10 WT) or (-)-

Nicotine hydrogen tartrate salt (24 mg/kg/day; Sigma, St. Louis, MO, USA) delivered in 

physiological saline (0.9%) (8 G72Tg and 7 WT) for 14 days using Alzet® osmotic minipumps 

(Charles River GMbH, Kißlegg, Germany). This treatment protocol is known to produce 

nicotine plasma concentrations similar to those found in human smokers (Hambsch et al., 

2014). For minipump implantation, mice were anaesthetised using isoflurane/oxygen vapor 

mixture (3.5%–4.5%; Isoflo, Abbott Laboratories Ltd, UK). 0.2 mg/kg meloxicam (i.m). was 

used for analgesia. A single incision along the midline of the back of each animal was made 

and osmotic mini-pumps were placed in parallel position to the spine. The flow operator was 

pointing away from the incision site. Nicotine was delivered for a period of 14 days at the daily 

dose of 7.8 mg/kg (free-base weight), at a rate of 0.5 μl per hour. Since the behavioral effects 

of nicotine were more pronounced in female compared with male mice in this transgenic line 

(Hambsch et al., 2014) autoradiography was undertaken only in the brains of female mice. 

Animal work was carried out in accordance with German and EU regulations (European 

Communities Council Directive 2010/63EU) and was approved by local authorities (University 

of Bonn animal experimentation ethics committee file-no.87-51.04.2010.A070). The animal 

work was reported according to ARRIVE guidelines. For checklist assessing compliance to 

ARRIVE guidelines please see Supplementary Table. 1. 

Quantitative receptor autoradiography 
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Following 14 days of chronic nicotine treatment, mice were killed by cervical 

dislocation, brains were removed and frozen using isopentane solution (-20oC) for 30 sec and 

stored at -80 oC, until use. Adjacent 20 μm coronal brain sections were cut at 300 μm intervals 

from fore to hind brain (complete mapping) at -21 °C using a cryostat apparatus and thaw 

mounted onto ice-cold microscope slides. Quantitative autoradiography was performed on 

brain sections from chronic saline- and nicotine-treated WT and G72Tg mice in accordance 

with previously described methods (Jarrett et al., 2006; Zanos et al., 2014b). Total binding was 

determined by incubating sections with 50 pM 125I-ornithine vasotocin (OVTA) for 1 hour in 

an incubation buffer medium containing 50mM Tris-HCl, 10mM MgCl2, 1mM 

ethylenediaminetetraacetic acid (EDTA), 0.1 % w/v bovine serum albumin, and 0.05 % w/v 

bacitracin (Sigma-Aldrich, Poole, UK, pH 7.4 at room temperature). Adjacent sections were 

incubated with [125I]-OVTA (50 pM) in the presence of 50μM unlabelled (Thr4,Gly7)-oxytocin 

(Bachem, Germany), to determine non-specific binding (NSB). Slides were apposed to Kodak 

MR-1 films (Sigma-Aldrich, UK) in Hypercassettes with autoradiographic [14C] microscales 

of known radioactive concentration (GE Healthcare Life Sciences, Amersham, U.K.) for 3 

days. Films were developed in a 50% Kodak D19 developer solution (Sigma-Aldrich, Poole, 

UK) and analyzed using MCID image analyzer (Image Research, Ontario, Canada) as 

previously described by Kitchen et al. (1997). Brain structures were identified by reference to 

the mouse atlas of Franklin and Paxinos (2001).  

Statistical analysis 

Data are presented as mean ± SEM and were analysed using GraphPad Prizm software. 

The same regions were analysed in all mice but binding in some regions could not be analysed 

due to either damage to the brains or sections thus the sample size change between brain 

regions. For the determination of differences in OTR binding between the different treatment 
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groups, two-way ANOVA for each brain region were performed with factors ‘treatment’ and 

‘genotype’, followed by Holm-Sidak post-hoc test. Statistical significance was set to p≤0.05. 

 

RESULTS 

Effect of nicotine on oxytocin binding in WT and G72Tg mice 

High levels of OTR binding (2.85–4.99 fmol/mg tissue) were found in the olfactory nuclei, 

piriform/endopiriform cortices, lateral septum and amygdala; medium binding levels (0.96–

2.54 fmol/mg tissue) in the cingulate cortex, olfactory tubercle, medial septum, ventral limb of 

the diagonal band of Broca and hypothalamus; and low levels (0.24–0.57 fmol/mg tissue) in 

the striatal areas (i.e., nucleus accumbens and caudate putamen), as well as the thalamus 

(Figures 1 and 2). 

A significant treatment effect was observed in the medial septum (F(1, 24) = 4.01; p =0.05) (Table 

1; Fig. 2). Holm-Sidak post-hoc analysis showed a near significant increase in OTR binding in 

saline-treated G72Tg compared with the saline-treated WT mice (p = 0.09), which returned to 

control levels following chronic nicotine administration (saline treated G72Tg vs nicotine 

treated G72Tg; p <0.05; n = 6-8/group). In the nucleus accumbens, two way ANOVA revealed 

a significant genotype effect (F(1, 24) = 4.01; p = 0.05) but no treatment or treatment x genotype 

interaction effects (p>0.05).  

A significant genotype x treatment interaction effect was detected in the cingulate cortex (F(1, 

23) = 4.86; p =0.04) and the central amygdala (F(1, 24) = 15.05; p = 0.0007) with a near significant 

interaction effect observed in the anterior olfactory nucleus (medial) (F(1, 19) = 3.66; p = 0.07). 

No individual treatment or genotype effects were observed in these regions (p>0.05). Holm-

Sidak post-hoc analysis showed near significantly higher levels of OTR in the anterior olfactory 

nucleus (medial) (p=0.08) and significantly higher levels of OTR in the cingulate cortex 

(p<0.05) and the central amygdala (p<0.05) of saline treated G72Tg mice compared with WT. 
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Chronic nicotine treatment restored OTR levels back to control WT saline levels in G72Tg 

mice in all these regions (p<0.05, saline-treated G72Tg compared with nicotine-treated G72Tg 

mice; p>0.05, saline WT compared to nicotine G72Tg). Interestingly, chronic administration 

of nicotine increased OTR binding only in the central amygdala of WT compared with saline 

WT controls (p <0.01; n = 6–8/group). This nicotine induced upregulation was not observed in 

G72Tg mice (p>0.05). 

No other genotype, treatment or genotype x treatment interaction effects were observed in any 

other regions analysed (p>0.05). 

DISCUSSION 

In the present study, we found increased OTR binding in the cingulate cortex and central 

amygdaloid nucleus in the brain of a G72Tg mouse model of schizophrenia compared with 

WT; this effect was reversed by chronic nicotine administration. In addition, we showed an 

effect of chronic nicotine administration in increasing OTR binding in the central amygdala of 

WT mice in line with our previous findings (Zanos et al., 2015). This nicotine-induced 

upregulation was absent in G72Tg mice. 

Higher rates of smoking among schizophrenics exist compared with the general 

population and schizophrenic patients tend to be heavier smokers, obtaining higher levels of 

nicotine per cigarette (de Leon & Diaz, 2005). We have previously shown, using the same 

administration paradigm, that chronic nicotine treatment was able to reverse several cognitive 

deficits in the G72Tg mouse model of schizophrenia (Hambsch et al., 2014) supporting the 

concept that schizophrenic patients may use nicotine from cigarettes to self-medicate some of 

the symptoms of schizophrenia (Glassman, 1993; Kumari & Postma, 2005). More specifically, 

we showed that chronic nicotine administration was effective in restoring impaired prepulse 

inhibition, working memory, associative learning and social recognition in G72Tg mice, 

further supporting the beneficial attributes of nicotine in modulating cognitive deficits 



11 

 

symptoms of schizophrenia (Hambsch et al., 2014). However, the mechanisms underlying the 

beneficial effects of nicotine treatment for alleviating negative symptoms of schizophrenia, 

including impaired cognition, are still not well understood. Since oxytocin has been implicated 

in the different aspects of cognition (Lee et al., 2015; Crespi, 2016) and social information 

processing (Freeman et al., 2014a; Freeman et al., 2014b), both of which are disrupted in 

schizophrenic patients (Bowie & Harvey, 2006), we assessed the regulation of the 

oxytocinergic system in the brains of the G72Tg mouse model of schizophrenia.  

We decided to focus this study on female G72Tg mice based on our previous 

observations indicating that the restorative effect of nicotine on pre-pulse inhibition deficits 

and certain cognitive deficits in G72Tg mice are more pronounced in female mice compared 

with male mice (Hambsch et al., 2014). This is consistent with the gender differences observed 

in characteristics and behaviours of smokers diagnosed with psychosis (Filia et al., 2014). 

Thus, in order to elucidate corresponding molecular mechanisms underlying the beneficial 

effects of nicotine in G72Tg mice, we focused our OT receptor autoradiographic study on 

female WT and G72Tg mice. 

Here we demonstrate a dysregulation of OTR density in G72Tg mice in brain regions 

associated with social cognition and social processing. Indeed, the upregulation of OTR 

observed in the G72Tg mouse model of schizophrenia were localized in the cingulate cortex 

and amygdala, regions that have been shown to mediate the effects of OT on social cognition 

and social processing (Zink & Meyer-Lindenberg, 2012). In addition, a neuronal interaction 

between the cingulate cortex and amygdala has been shown to mediate fear processing 

(Williams et al., 2006), which is also impaired in schizophrenics (Michalopoulou et al., 2008), 

suggesting that oxytocinergic dysregulation within these brain circuits might underlie some of 

the negative symptoms of schizophrenia. Increases in OTR binding were also observed in the 

medial septum and nucleus accumbens of the G72Tg mouse model of schizophrenia in the 
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present study but this upregulation did not quite reach statistical significance. Notably, deep 

brain stimulation specifically in these two brain regions was shown to alleviate psychotic 

symptoms in rats (Ma & Leung, 2014), suggesting that changes in the OTR system in both 

these brain areas might be involved in psychosis observed in schizophrenic patients; however 

the exact role of OT in the modulation of such behaviors requires further investigation.  

Although the molecular mechanism underpinning the upregulation of OTR in certain 

brain regions of G72Tg mice cannot be determined from this study, it is likely that this may be 

driven by alterations in central OT levels. An increase in OT peptide or repeated activation of 

OTRs is known to cause a rapid desensitisation of OTRs and consequently decreases receptor 

binding in cells (Evans et al., 1997) and brains of animals (Peters et al., 2014; Rae et al., 2018) 

Rae et al., 2018; Peters et al., ). Several studies have reported low levels of central OT go hand 

in hand with high OTR density in the brain of the same animals (Lee et al., 2007; Zanos et al., 

2014a). Interestingly, this central oxytocinergic dysregulation has been shown to be 

concomitant with the emergence of social deficit and emotional impairment, behaviors which 

were reversed by administration of the OT or OT analogues (Zanos et al. 2014; (Green & 

Leitman, 2008), pointing towards a causal relationship between central oxytocinergic 

dysregulation and socio-emotional impairment. Therefore, we can postulate that the increased 

OTR binding observed in the present study is caused by a reduction in OT peptide levels in the 

brain as a compensatory neuroadaptive mechanism. This is in line with decreased plasma OT 

levels and hypothalamic OT mRNA levels found in schizophrenic patients (Walss-Bass et al., 

2013) and rodents (Lee et al., 2007) respectively, an effect which was concomitant with an 

increase in OTR binding in the central nucleus of the amygdala of a different rodent model of 

schizophrenia (Lee et al., 2007) Moreover, several studies have demonstrated beneficial effects 

of OT in treating social cognitive deficits in schizophrenic patients (Feifel & Shilling, 2010; 

Fischer-Shofty et al., 2013; see also Miyamoto et al., 2013a), further supporting the hypothesis 



13 

 

that dysregulated central oxytocinergic system may mediate some of the symptoms observed 

in schizophrenia. 

Interestingly, here we show that chronic nicotine treatment reverses the brain specific 

upregulated OTR observed in G72Tg mice clearly indicating that the dysregulated central OTR 

system is under the regulatory control of nicotine. Whether this regulatory effect of nicotine on 

the OTR system of G72Tg mice underlines the beneficial effect of nicotine on alleviating 

cognitive deficits experienced by schizophrenic patients cannot be determined from this study. 

Nonetheless the fact that these nicotine-induced oxytocinergic neuroadaptations are 

concomitant with a complete nicotine induced reversal of impaired prepulse inhibition, 

working memory, associative learning and social recognition detected in G72Tg mice 

(Hambsch et al., 2014) makes this hypothesis plausible. Interestingly, the effects of nicotine 

on attention performance (Mobascher et al., 2012) and working memory (Ernst et al., 2001) 

have been associated with an activation of the anterior cingulate cortex, supporting our 

hypothesis of an involvement of the OTR system in the cingulate cortex to underlie the 

beneficial effects of nicotine on schizophrenia. Moreover, we have demonstrated that chronic 

nicotine administration abolished increases in OTR binding within the medial septum of 

G72Tg mice, a region associated with social memory (Lukas et al., 2013). Given the key role 

of the septum in mediating the beneficial effects of nicotine on social cognition, which is 

impaired in schizophrenics (Beck et al., 2015), together with oxytocins’ cognitive enhancement 

properties (Zink & Meyer-Lindenberg, 2012),  it would be intriguing to suggest a possible role 

of the septal OT system in modulating the enhancement of social cognition by chronic nicotine 

administration in mouse model of schizophrenia. 

Although 125I-ornithine vasotocin (OVTA) used to label OTR in our study is highly 

selective antagonist for oxytocin receptors and has negligible affinity for vasopressin receptors 

(Elands et al., 1988), one cannot entirely exclude the possibility that OVTA binding may reveal 
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a small proportion of vasopressin receptors in addition to OTRs. In addition, due to the 

structural similarity of OT to the related neuropeptide vasopressin, and hence the cross-

reactivity of the latter to OTRs (Neumann & Landgraf, 2012), we cannot rule out the possibility 

that nicotine-induced increase in vasopressin release could also contribute to the normalization 

of the expression of OTRs in some of the brain regions of G72Tg mice. Indeed, there is some 

evidence that nicotine can also induce vasopressin secretion from the hypothalamus (Fuxe et 

al., 1983). 

Using the same G72Tg mouse model of schizophrenia, we have previously shown that 

chronic nicotine administration reversed increases in α7 nicotinic receptor binding within the 

cingulate cortex of G72Tg compared with WT mice. This is particularly important since 

adjunctive treatment with α7 nAChR agonists and OT is believed to be promising in the 

treatment of negative symptoms of schizophrenia, including psychotic symptoms and cognitive 

deficits (Miyamoto et al., 2013b). Therefore, an interaction between the oxytocinergic and 

nicotinic acetylcholine receptor systems might exist in the brain to mediate several of the 

negative symptoms of schizophrenia. This hypothesis warrants further investigation, especially 

in the light of the findings of Zaninetti et al., (2002), who showed that nicotinic agonists can 

directly increase excitability of OT magnocellular neurons. Additionally, nicotine 

administration was shown to directly induce a marked activation (85%) of the oxytocinergic 

neurons in the hypothalamus of rats (Mikkelsen et al., 2012), where 7 nicotinic acetylcholine 

receptors were shown to be expressed (Hatton & Yang, 2002), further supporting an interaction 

between these systems.  

Altogether, the current findings suggest the possibility that nicotine treatment improves 

at least some of the symptoms of schizophrenia via an oxytocinergic mechanism, thus 

supporting the self-medication hypothesis, that schizophrenic patients might smoke more than 

non-schizophrenic populations in an attempt to self-medicate distressing cognitive symptoms 
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(Kumari & Postma, 2005). While smoking is known to be harmful to health (The Health and 

Social Care Information Centre, 2012) and current guidelines recommend a variety of smoking 

cessation methods for people suffering from schizophrenia (NICE, 2015), traditional NRT 

and/or novel nicotine containing products such as electronic cigarettes may be useful not only 

for improving smoking cessation rates (Hickling et al., 2018), but also to treat some of the 

symptoms of schizophrenia. Interestingly, the beneficial effects of nicotine on cognitive 

behavior in G72Tg mice were observed following relatively high doses (24 mg kg−1 day−1, also 

used in the present study)-albeit within the range observed in smokers- but not at low dose 

(16 mg kg−1 day−1) of nicotine exposure (Hambsch et al., 2014), which is in line with the higher 

cigarette consumption and nicotine intake rate of schizophrenic patients compared with control 

smokers (Olincy et al., 1997) It is therefore possible that higher levels of nicotine are required 

to normalise the upregulated OTRs in G72Tg mice brains and hence alleviate some of the 

cognitive deficits in these animals, and may have implications on the dose of nicotine 

recommended for schizophrenic smokers undergoing nicotine containing smoking cessation 

methods. As there are safety concerns regarding very high doses of nicotine, a useful alternative 

may consist of an adjunctive treatment of OT which is known to also known to cause 

downregulation of OTRs in the brain (Peters et al., 2014) with “safer” doses of nicotine. Such 

targeted pharmacotherapies in this specific population warrants further investigation. 

In conclusion, the present study demonstrates that dysregulated OTRs in a mouse model 

of schizophrenia are under regulatory control of nicotine, suggesting a possible interaction 

between nAChR and OTR systems in the mechanism underlying nicotine dependence-

schizophrenia comorbidity. Whether there is a causal relationship between this regulatory 

control of nicotine and its beneficial effect in ameliorating cognitive symptoms of 

schizophrenia warrants further investigation.  
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Table 1. Two Way ANOVA factorial results  

Brain region Treatment Genotype Interaction Animal numbers

Anterior olfactory nucleus-lateral F(1, 18) = 0.82; p  = 0.38 F(1, 18) = 0.47; p  = 0.50 F(1, 18) = 0.71; p  = 0.41 n = 5-7

Anterior olfactory nucleus-ventral F(1, 19) = 0.002; p  = 0.96 F(1, 19) = 0.02; p  = 0.89 F(1, 19) = 2.28; p  = 0.15 n = 5-6

Anterior olfactory nucleus-mediall F(1, 19) = 2.54; p  = 0.13 F(1, 19) = 1.44; p  = 0.25 F(1, 19) = 3.66; p  = 0.07 n = 5-7

Cingulate cortex F(1, 23) = 2.23; p  = 0.15 F(1, 23) = 3.28; p  = 0.08 F(1, 23) = 4.86; p  = 0.04 * [% 14.88] n = 6-8

Piriform cortex F(1, 26) = 1.35; p  = 0.26 F(1, 26) = 0.78; p  = 0.39 F(1, 26) = 1.65; p  = 0.21 n = 6-9

Endopiriform cortex F(1, 24) = 0.33; p  = 0.57 F(1, 24) = 0.21; p  = 0.65 F(1, 24) = 0.88; p  = 0.36 n = 6-8

Olfactory tubercle F(1, 21) = 0.23; p  = 0.64 F(1, 21) = 0.007; p  = 0.93 F(1, 21) = 0.19; p  = 0.66 n = 4-8

Nucleus accumbens F(1, 24) = 0.13; p  = 0.72 F(1, 24) = 4.01; p  = 0.05 * [13.08%] F(1, 24) = 2.28; p  = 0.11 n = 6-8

Caudate putamen F(1, 25) = 2.00; p  = 0.17 F(1, 25) = 0.02; p  = 0.88 F(1, 25) = 0.10; p  = 0.76 n = 6-8

Lateral septum F(1, 25) = 0.09; p  = 0.77 F(1, 25) = 2.57; p  = 0.12 F(1, 25) = 1.72; p  = 0.20 n = 5-10

Medial septum F(1, 23) = 4.01; p  = 0.05 * [12.58%] F(1, 24) = 1.69; p  = 0.21 F(1, 24) = 3.00; p  = 0.09 n = 6-8

Ventral limb of the diagonal band of Broca F(1, 24) = 0.48; p  = 0.50 F(1, 24) = 1.66; p  = 0.21 F(1, 24) = 1.91; p  = 0.18 n = 6-8

Hippocampus F(1, 22) = 0.90; p  = 0.35 F(1, 22) = 1.76; p  = 0.20 F(1, 22) = 1.48; p  = 0.24 n = 5-9

Thalamus F(1, 21) = 0.003; p  = 0.96 F(1, 21) = 0.20; p  = 0.66 F(1, 21) = 0.27; p  = 0.61 n = 5-9

Hypothalamus F(1, 22) = 0.07; p  = 0.80 F(1, 22) = 0.86; p  = 0.36 F(1, 22) = 0.03; p  = 0.85 n = 5-9

Basolateral amygdala F(1, 21) = 0.02; p  = 0.88 F(1, 21) = 0.24; p  = 0.63 F(1, 21) = 0.15; p  = 0.70 n = 4-9

Basomedial amygdala F(1, 19) = 0.93; p  = 0.35 F(1, 19) = 0.31; p  = 0.58 F(1, 19) = 3.84; p  = 0.07 n = 4-8

Central amygdala F(1, 24) = 0.28; p  = 0.60 F(1, 24) = 0.03; p  = 0.87 F(1, 24) = 15.05; p  = 0.0007 *** [37.88%] n = 6-8

*p ≤0.05; ***p ≤0.001

% of total variation (eta squared)  is included in brackets   
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FIGURE LEGENDS 

Figure 1: Representative autoradiograms of [125I]OVTA binding following chronic saline or 

nicotine treatment in wild type (WT) and G72 transgenic (G72Tg) mice. Computer enhanced 

colour autoradiograms of 50 pmol [125I]-ornithine vasotocin analogue ([125I]OVTA) binding to 

oxytocin receptors (OTR) in coronal brain sections of WT and G72Tg mice treated with 

chronic saline or nicotine (24 mg/kg/day) via subcutaneous minipumps for 14 days. Coronal 

brain sections are represented at the level of the olfactory nuclei (row 1; Bregma 2.46 mm), 

striatum (row 2; Bregma mm), septum (row 3; Bregma 0.86 mm). Adjacent sections were 

incubated with 50 μM oxytocin to determine non-specific binding (NSB). Binding levels are 

represented using a pseudo-color interpretation of black and white film images in fmol/mg of 

tissue equivalent.  

 

Figure 2: Quantitative [125I]OVTA binding in saline- and nicotine-treated wild type (WT) 

and G72 transgenic (G72Tg) mice. Brain sections from WT and G72Tg mice treated with 

chronic saline (SAL) or nicotine (NIC; 24 mg/kg/day) via subcutaneous minipumps for 14 days 

were bound with [125I]OVTA to determine OTR binding levels in the (A-C) anterior olfactory 

nuclei, (D) cingulate, (E) piriform and (F) endopiriform cortices, (G) olfactory tubercle, (H) 

nucleus accumbens, (I) caudate putamen, (J) lateral and (K) medial septum, (L) ventral limb 

of the diagonal band of Broca, (M) hippocampus, (N) thalamus, (O) hypothalamus, (P) 

basolateral, (Q) basomedial and (R) central amygdala. Data are presented as mean ± standard 

error of the mean. * p<0.05; ** p<0.01 (n = 4-10/group). 
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