Cell Proliferation

Vasoactive intestinal peptide (VIP) induces proliferation of human hepatocytes

Journal:	Cell Proliferation
Manuscript ID	Cellprol-2862-17.R1
Manuscript Type:	Original Manuscript
Date Submitted by the Author:	n/a
Complete List of Authors:	Khedr, Mogibelrahman; University of Southampton, Clinical & Experimental Sciences; Suez Canal University, Faculty of Medicine, Department of Clinical Pharmacology Abdelmotelb, Ahmed; University of Southampton, Clinical & Experimental Sciences; Tanta University, Faculty of Medicine, Department of Pharmacology Bedwell, Thomas Andrew; University of Southampton, Clinical & Experimental Sciences Shtaya, Anan; St George's University of London Alzoubi , Mohammad ; University of Southampton, Clinical & Experimental Sciences; University of Jordan Abu Hilal, Mohammed ; University of Southampton, Clinical & Experimental Sciences Khakoo, Salim; University of Southampton, Clinical & Experimental Sciences
Keywords:	VIP, EGF, Hepatocytes, Proliferation, MAPK/ERK, VPAC1
	·

SCHOLARONE[™] Manuscripts

2 3	1	Vasoactive intestinal peptide (VIP) induces proliferation of human hepatocytes
4 5	2	Running title: VIP stimulates proliferation of hepatocytes.
6 7	3	
8 9 10	4	Mogibelrahman M.S. Khedr ^{1,2} , Ahmed M. Abdelmotelb ^{1,3} , Thomas A. Bedwell ¹ , Anan
10 11 12	5	Shtaya ⁴ , Mohammad N. Alzoubi ^{5,6} , Mohammed Abu Hilal ^{1,6} , and Salim I. Khakoo ^{1,6} .
13 14	6	
15 16	7	¹ Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of
17 18 10	8	Southampton, Southampton, United Kingdom. ² Faculty of Medicine, Suez Canal University,
19 20 21	9	Ismailia, Egypt. ³ Faculty of Medicine, Tanta University, Tanta, Egypt. ⁴ St George's
22 23	10	University of London, London, United Kingdom. ⁵ University of Jordan, Amman, Jordan.
24 25	11	⁶ Southampton University Hospitals NHS Trust, Southampton, United Kingdom.
26 27	12	
28 29	13	Corresponding authors:
30 31	14	Mogibelrahman M.S. Khedr
32 33 34	15	MBBCh, MSc, PhD
35 36	16	Clinical & Experimental Sciences Academic Unit,
37 38	17	Clinical & Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton,
39 40	18	Southampton University Hospital,
41 42	19	Tremona Road, Level F, MP837, SO16 6YD
43 44	20	Tel/ 02381206153, Mob/ 07961762098
45 46 47	21	E-mail: M.E.Khedr@soton.ac.uk
47 48 49	22	
50 51	23	Key words: EGF, VIP, Hepatocytes, Proliferation, MAPK/ERK, VPAC1.
52 53	24	Electronic word count: 4,098 words.
54 55	25	Number of figures and tables: 7 Figures and 2 Supplementary figures.
56 57		
58 59		Page 1 of 29 Cell Proliferation
60		

Cell Proliferation

Author contributions:

MMS Khedr, AM Abdelmotelb, TA Bedwell an MN Alzoubi were responsible for data acquisition and analysis. AM Abdelmotelb and A Shtaya were concerned with ethical considerations. M Abu Hilal and SI Khakoo contributed to the conception, design of the work or of parts of it, and to its interpretation. MMS Khedr and SI Khakoo drafted and revised the manuscript, AM Abdelmotelb and M Abu Hilal revised it critically for intellectual content, and T Bedwell proofread the manuscript.

Abbreviations used in this article:

- ERK, extracellular signal-regulated kinase; MAPK, mitogen-activated protein kinase; PH,
- Partial Hepatectomy; VPAC1, VIP and pituitary adenylate cyclase-activating polypeptide
- receptor-1.

Cell Proliferation

38 Abstract: 225 words

39 Objectives: Proliferation of hepatocytes *in vitro* can be stimulated by growth factors such as 40 epidermal growth factor (EGF), but the role of vasoactive intestinal peptide (VIP) remains 41 unclear. We have investigated the effect of VIP on maintenance and proliferation of human 42 hepatocytes.

Materials and Methods: Human hepatocytes were isolated from liver specimens obtained 45 from patients undergoing liver surgery. Treatment with VIP or EGF was started 24 hours 46 after plating and continued for three or five days. DNA replication was investigated by 47 Bromodeoxyuridine (BrdU) incorporation and cell viability detected by MTT assay. Cell 48 lysate was analysed by western blotting and RT–PCR. Urea and albumin secretion into the 49 culture supernatants were measured.

Results: VIP increased DNA replication in hepatocytes in a dose dependant manner, with a peak response at day three of treatment. VIP treatment was associated with an increase in mRNA expression of antigen identified by monoclonal antibody Ki-67 (MKI-67) and Histone Cluster 3 (H3) genes. Western blotting analysis showed that VIP can induce a PKA/B-Raf dependant phosphorylation of extracellular signal-regulated kinases (ERK). Although EGF can maintain hepatocyte functions up to day five, no marked efffect was found with VIP.

Conclusions: VIP induces proliferation of human hepatocytes with little or no effect on 59 hepatocyte differentiation. Further investigation of the role of VIP is required to determine if

60 it may ultimately support therapeutic approaches of liver disease.

Introduction:

Hepatocyte transfusions have shown promise as an alternative to conventional liver transplantation in treatment of some genetic disorders and acute liver failure^{1,2}. These potential therapies are compromised by poor viability, rapid de-differentiation, the low proliferative capacity of primary hepatocytes *in vitro*³ and the need for high numbers of hepatocytes. In addition, there is often poor liver cell viability after cryopreservation⁴. Improving hepatocyte *in vitro* viability and growth is crucial for progress in their use as a replacement therapy and in drug screening.

VIP is a 28-amino acid neuropeptide found largely in the brain, gastrointestinal tract and liver⁵. Moreover, VIP receptors have been characterised and purified from the liver^{6,7}. Reports have shown that VIP can change the metabolic functions of rat hepatocytes, and can stimulate gluconeogenesis, ureagenesis, and inhibit glyconeogenesis^{8,9}. VIP has been found to be involved in regulation of hepatic blood flow, and modulation of both innate and adaptive immune functions¹⁰⁻¹². Interestingly, VIP mRNA expression is present in rat liver following partial hepatectomy (PH)¹³. Unlike Hepatic Growth Factor (HGF) and Epidermal Growth Factor (EGF), the role of VIP in liver regeneration is under-investigated. Previous reports have shown that VIP may exert bi-directional inhibitory or stimulatory effect on cell proliferation of a number of cell types. Kar *et al.* (1996) described a stimulatory effect of VIP alone on hepatocytes obtained from regenerated liver of rats¹³. In addition, it has been reported that VIP may have a mitogenic effect on HT29 and H9 cell lines^{14,15}, while it can cause an inhibition of proliferation of human HepG2 cells¹⁶.

The mitogen-activated protein kinase (MAPK) pathway has been reported to play a crucial role in hepatocyte replication¹⁷. Moreover, EGF induced proliferation of rat hepatocytes is

Cell Proliferation

mainly dependant on the p44 and p42 isoenzymes (extracellular signal-regulated kinases, ERK1 and ERK2) of the MAPK pathway¹⁸. VIP stimulates intracellular production of cyclic adenosine 3':5'-monophosphate (cAMP) in various cell types, including hepatocytes⁸. Activation of cAMP-dependant Rap1 GTPase may be associated with either activation or inhibition of the (MAPK/ERK kinase) MEK/ERK cascade. This effect relies on the presence or absence of the serine/threonine-protein kinase B-Raf, respectively in cells¹⁹. Of relevance is that B-Raf kinase has been detected in liver²⁰. These findings support that hypothesis that VIP may contribute in hepatocytes proliferation.

- - 95 In the present study, we have investigated the effects of VIP on cell proliferation, gene
- 96 expression, cell signalling and function in human hepatocytes.

97 Materials and Methods:

98 Isolation of human hepatocytes:

Tissue samples (2-10gm) were obtained from fresh surgical macroscopically normal liver tissue resections from patients undergoing hepatectomies with informed consent (Research Ethics Committee, REC North East - Newcastle & North Tyneside 2, REC ref. 13/NE/0070). A total of 46 human liver cell preparations derived from the unaffected resection margins of the livers from 39 different donors with primary or metastatic liver tumors (24 men and 15 women) were used. Patients' ages ranged from 29 to 83 years. Hepatocytes were isolated using a two-step perfusion procedure as described $previously^{21}$ with some modifications. Cells were plated on mouse collagen type IV gel layer 1 - 2.5µg cm⁻² (Corning Ltd., Flintshire, UK) in William's E medium (Thermo Fisher, Inchinnan, UK) and incubated at 37°C in a humidified incubator with 5% CO₂.

5-Bromo-2'-deoxyuridine (BrdU) DNA incorporation assay:

EGF (Sigma, Gillingham, UK) at 5, 10 and 20ng ml⁻¹ or VIP (Sigma) at 10⁻⁸, 10⁻⁷ or 10⁻⁶M was added 24 hours following cell seeding. Hepatocytes were incubated with BrdU (10µg ml⁻¹, Sigma) for 2 hours at 37°C. DNA-integrated BrdU was detected by rat anti-BrdU antibody (Bio-Rad, Hertfordshire, UK) and subsequently donkey anti-rat IgG-Alexa 488 (Thermo Fisher). Nuclei were stained with 4'-6-diamidino-2-phenylindole, DAPI (Sigma). Using fluorescence microscopy, numbers of BrdU⁺ and DAPI⁺ cells were determined in 6 different high power fields per well.

119 Measurement of lactic dehydrogenase (LDH):

120 Equal volumes of 200mM Tris (hydroxymethyl) aminomethane (Tris) pH 8, 50mM Lithium

121 lactate, freshly prepared substrate solution [100µl P-Iodonitrotetrazolium Violet, INT (33mg

Cell Proliferation

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
19 20	
21	
20 21 22 23 24	
22	
23	
24	
25	
26	
27	
78	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
20	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
55 54	
54 55	
22	
56	
57	
58	
59	

60

122 ml⁻¹ in dimethyl sulfoxide (DMSO) + 100µl, Phenazine methosulfate, PMS (9 mg ml⁻¹) + 2.3 123 ml β-nicotinamide adenine dinucleotide (NAD) hydrate (3.74 mg ml⁻¹)] and samples or 124 positive control (5µg ml⁻¹ L-Lactic Dehydrogenase from bovine heart, Sigma) were loaded 125 into an assay plate. The V_{max} was measured at 490nm for 10min in a SpectraMax® Plus 384 126 Microplate Reader (Molecular Devices, Wokingham, UK) and LDH activity (U ml⁻¹) was 127 calculated.

- 128
 - 129 Viability and Proliferation Assays:

130 Viability was determined using a colourimetric MTT assay (Sigma) and Quick Cell
131 Proliferation Assay kit II (Abcam, Cambridge, UK) were used according to manufacturers'
132 instructions.

133

134 Polymerase Chain Reaction (PCR) and Real time PCR (rt-PCR):

135 RNA was extracted using a RNeasy® kit (Qiagen, Crawley, West Sussex, UK) following the 136 manufacturer's instructions. Complementary DNA (cDNA) was synthesised using a Primer 137 Design Precision nanoScript 2 reverse transcriptase kit (Millbrook, Southampton, UK) 138 according to the manufacturer's instructions in a MasterCycler® 480 thermocycler 139 (Eppendorf, Hamburg, Germany). The rt-PCR Primers were designed using the ProbeFinder 140 software version 2.5 (Lifescience.roche.com) and oligonucleotide primers for albumin, 141 Antigen Identified By Monoclonal Antibody Ki-67 (MKI-67), Histone Cluster 3 (H3) were 142 obtained from Eurofins MWG/operon (Ebersberg, Germany) (Supplementary data 1). VIP 143 and pituitary adenylate cyclase-activating polypeptide receptor-1 (VPAC1) and EGF receptor 144 (EGFR) mRNA expression was assessed using GoTaq® Hot Start Polymerase (Promega UK 145 Ltd, Southampton, UK) according to manufacturer's instructions. PCR products were visualized on 2% agarose gel, band densities were measured and normalised to that of 146

Cell Proliferation

Glycerinadehyde-3-Phosphate-Dehydrogenase, GAPDH using a ChemiDoc[™] imaging
system (Bio-Rad). The qPCR was performed using a SYBR green Mastermix buffer (Primer
Design) in an A&B 7900HT Fast Real-Time PCR System thermocycler (Applied Biosystems,
CA, USA). The Ct values were normalized to the GAPDH and calibrated to untreated cells.
The fold change of mRNA expression was calculated according to the ΔΔCt method.

153 Detection of Phospho-p44/42 MAPK (Erk1/2) and VPAC1 in hepatocytes using Western 154 Blotting:

Hepatocytes were serum starved for 24 hours prior to incubation with EGF (20 ng ml⁻¹) or VIP (10⁻⁶ M). The B-RAF inhibitor, SB-590885 and the PKA inhibitor, *Rp*-cAMP triethylammonium salt (Rp-cAMPS) were used. Cells were lysed using TruPAGE[™] LDS Sample Buffer (Sigma) with phosphatase and protease inhibitors. Protein concentrations were measured and separated in a TruPAGE® 10% precast gels (Sigma) under reducing conditions, then transferred to nitrocellulose membranes. The membranes were probed with rabbit anti-human Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) antibody or rabbit anti-human p44/42 MAPK (Erk1/2) antibody (New England Biolabs, Hertfordshire, UK), anti-rabbit-horseradish peroxidase (HRP) followed by goat (DakoCytomation, Cambridgeshire, UK). Reactive bands were detected using the Luminata Forte Western HRP substrate (Millipore UK Ltd., Hertfordshire, UK). In another experiment, the level of VPAC1 protein expression in untreated or VIP (10⁻⁶M) treated hepatocytes, was investigated using a rabbit polyclonal anti VPAC1 (Abcam) and followed by goat anti-rabbit-horseradish peroxidase (HRP) (DakoCytomation).

cAMP Direct Immunoassay:

Levels of cAMP in hepatocytes 24 h following cell seeding and at day 3 or 5 following

2
3
4
5
6
7
8
9
10
11
12
14
15
16
17
18
19
20
21
22
23
24
25
25
26
27
28
29
30
31
32
33
34
35
36 37
3/
38
39
40
41
42
43
44
45
46
48
49
50
51
52
53
54
55
56
50 57
58
59

60

172 stimulation with 10^{-6} M VIP treatment were detected using a cAMP direct immunoassay 173 (Abcam) according to the manufacturer's instructions. cAMP concentrations (μ M) were

- 174 determined and corrected to total proteins concentrations in samples (µg).
- 175

171

176 Albumin ELISA and Urea concentration assay:

Albumin and urea concentrations in the supernatant of hepatocytes cultures were determined
using the ELISA DuoSET[®] kit for human albumin (R&D Systems, Oxfordshire, UK) and the
QuantiChrom[™] urea assay kit (QuantiChrom, BioAssay Systems, Hayward, CA)
respectively, according to the manufacturer's instructions.

181

182 Statistics:

183Two-way analysis of variants (ANOVA) followed by Fisher's least significant difference184(LSD) multiple comparisons tests were performed using GraphPad Prism version 7.7.1 for185Windows, GraphPad Software, La Jolla California USA, www.graphpad.com. Data has been186represented by Mean \pm standard error of the mean (SEM) or standard deviation (SD) as187indicated. P < 0.05 was taken as significant.

188

189 For further details regarding the materials and methods, please refer to the supplementary190 data 1.

Results:

192 Stimulation of DNA replication in hepatocytes by VIP:

193	EGF at high concentrations such as 50ng ml ⁻¹ , has been reported to be responsible for an
194	increase in [3H] methylthymidine incorporation in rat hepatocytes. The response to EGF
195	maximised at 24 hour and continued with persistent exposure ²² . In the current work,
196	proliferation of human hepatocytes was investigated by detecting BrdU incorporation (Figure
197	1A). Herein, EGF resulted in an increase of BrdU positive cells at concentrations of 10ng ml ⁻
198	¹ (a mean of $1.3 \pm SD \ 0.9$ fold) and 20ng ml ⁻¹ (a mean of $1.8 \pm SD \ 1.4$ fold) at day 3 (Figure
199	1B), and this effect was continued at day 5 of treatment, 10 ng ml ⁻¹ (a mean of $1.5 \pm$ SD 0.5
200	fold) and 20 ng ml ⁻¹ (a mean of $1.7 \pm$ SD 0.5 fold) (Figure 1C). Interestingly, VIP stimulated
201	proliferation of human hepatocytes in a dose dependant manner at day 3 up to a mean of 3.2
202	\pm SD1.1 fold at 10 ⁻⁶ M (Figure 1D). However, a decline of hepatocyte response to VIP was
203	observed at day 5 (a mean of $1.2 \pm SD \ 0.6$ fold up to $10^{-6}M$) (Figure 1E). Similarly, EGF
204	addition was associated with a rise in total cell numbers at day 3; 10ng ml ⁻¹ (a mean of $1.4 \pm$
205	SD 1.1 fold) and 20ng ml ⁻¹ (a mean of $1.9 \pm$ SD 1.7 fold) and day 5; 10ng ml ⁻¹ (a mean of 1.7
206	\pm SD 0.4 fold) and 20 ng ml ⁻¹ (a mean of 1.7 \pm SD 0.3 fold). VIP at day 3 resulted in an

increase of total cells by a mean of 2.2 ± 0.9 fold at 10^{-7} M and $3.4 \pm$ SD 1.4 fold at 10^{-6} M. The drastic decrease in hepatocyte response to VIP at day 5 raised a concern about changes in cell viability and status, and was investigated further.

211 VIP treatment has a limited effect on hepatocyte survival *in vitro*:

Effects of EGF or VIP on hepatocyte integrity was tested by measuring LDH release in the cell culture supernatants. In the first 24 hours following cell extraction, LDH activity was high (a mean of $0.90 \pm \text{SD } 0.29 \text{ U ml}^{-1}$) (Figure 2A), which may be a result of the isolation process or spontaneous activation of hepatocyte apoptosis^{23,24}. A dramatic decrease in LDH Page 11 of 49

Cell Proliferation

levels was observed in the following 24 hours (a mean of $0.14 \pm SD \ 0.16 \text{ U/ml}$). This may have been caused by washout of old medium containing dead and apoptotic cells. No further change in LDH activity was observed up to day 5. Treatment of hepatocytes with EGF resulted in a minimal change in LDH activity in the supernatants at day 1 compared to untreated cells. A decrease in LDH activity was observed at days 3 and 5 at various concentrations of EGF (Figure 2B). When VIP was added to the medium, no change in LDH activity was observed at day 1 or 3 of treatment (Figure 2C). At day 5, cells treated with VIP showed a marked increase in LDH levels, with approximately 2, 8 and 10 fold changes at 10⁻ ⁸M, 10⁻⁷M and 10⁻⁶M of VIP respectively. There was also a rise in LDH activity when both agents were added together to the hepatocyte culture medium (data not shown).

The metabolic activity of the cell was assessed using the MTT assay. At day 3, EGF showed a marked improvement in cell viability (Figure 2D) and VIP treatment was associated with a concentration dependant increase in hepatocyte metabolic activity, peaking at a concentration of 10⁻⁶M (Figure 2E). Results showed low metabolic activity of primary human hepatocytes after day 5 of cell seeding, irrespective of the addition of EGF or VIP. This result may reflect cell loss.

Previous results have shown that the support of hepatocyte survival was lacking when VIP was used alone and cells have entered a late phase of death or apoptosis. In order to address this, we have tested DMSO as an agent which may prevent this deterioration of cell viability and as reported, can maintain hepatocyte differentiation and improve liver-specific functionality²⁵. DMSO alone induced cell death as compared to medium alone, however addition of 2% DMSO to culture medium was associated with the restoration of the hepatocyte response to EGF and the VIP mitogenic effect at day 5 of treatment (Figure 3A

Page 11 of 29

Cell Proliferation

2
3
4
5 6
6
7
8
9
10
11
12
13
14 15
15
16
17
17
18
19
20
21
21
22 23
23
24
 2⊑
25
26
27
28
20
29
30
31
32
33
34 35
35
36
37
5/
38
39
40
41
42
43
44
45
46
47
48
50
51
52
53
54
55
56
57
58
50

59

60

241	and 3B). In addition to hepatocytes loss, the noticeable decrease in the effect of VIP by day 5
242	and a change in expression of VIP receptors may contribute to hepatocyte resistance VIP. To
243	test this possibility mRNA expression of VPAC1, the most abundant VIP receptor in the
244	liver, was investigated using a semi-quantitative RT-PCR technique ²⁶ . In untreated
245	hepatocytes, level of mRNA expression of VPAC1 or EGFR did not change significantly at
246	day 3 (Figure 3C). However, at day 5 cells expressed lower levels of EGFR mRNA which is
247	a phenomenon that has been reported previously ²⁷ but VPAC1 mRNA expression did not
248	show any change. Western blotting revealed several forms of VPAC1 in human hepatocytes
249	at molecular weights of ~250, ~100 and ~52 kDa (Figure 3D), as described previously ²⁸ .
250	During hepatocytes culture, VPAC1 protein expression did not show marked changes, but
251	VIP treatment was associated with a marked decrease in VPAC1 gene mRNA expression at
252	day 5 of cell culture (Supplementary Figure 1). The level of VPAC1 activation has previously
253	been assessed by measuring intracellular cAMP concentrations. Interestingly, exposure of
254	VPAC1 to VIP at a concentration of 10 ⁻⁶ M at 24 hours following cell seeding was found to
255	stimulate production of cAMP by hepatocytes as compared to untreated cells (mean
256	concentration 5.96 μ M/ μ g of protein ± SEM 0.64 versus 4.18 ± 0.60 respectively, P =
257	0.0029) (Figure 3E). Production of cAMP as a response to VIP continued but to a lesser
258	extent until day 3 of hepatocyte culture (mean of 5.90 μ M/ μ g of protein ± 0.77 and 4.95 ±
259	0.97 respectively, $P = 0.0761$). Notably, constitutive cAMP showed a lower concentration at
260	day 5 of cell culture in untreated cells (a mean of $3.85 \pm \text{SEM } 0.84 \ \mu\text{M/}\mu\text{g}$ of protein) and
261	VPAC1 receptors did not show as clear a response to VIP as that seen at early time points
262	$(4.52 \pm 0.69 \ \mu M/\mu g$ of protein). Taken together, these finding may suggest a change in
263	receptor functionality over time.

Page 13 of 49

Cell Proliferation

264 Expression of proliferation-associated genes was induced by VIP treatment:

Expression of the active cell cycle marker, MKI-67²⁹ and the mitotic marker, H3³⁰ genes were studied using quantitative rt-PCR. EGF alone induced a six-fold increase in mRNA expression of MKI-67, most significantly at day 3 of treatment at concentrations up to 10ng ml⁻¹ (Figure 4A). In addition, EGF treatment resulted in up to a four-fold increase in expression of H3 mRNA by day 3 of treatment, most noticeably at 20ng ml⁻¹ EGF (Figure 4B). Addition of VIP to cultured hepatocytes were associated with a two-fold increase in MKI-67 gene expression at day 3, rising to four-fold at day 5 of treatment at a concentration of 10⁻⁶M (Figure 4C). Similarly, VIP induced a concentration dependant increase in

expression of H3 at days 3 and 5 (Figure 4D). Although the combination of EGF and VIP was associated with a considerable increase in expression of MKI-67 at day 5, there was no difference compared to either EGF or VIP alone (Figure 4E). The presence of EGF and VIP together in the culture medium had little effect on expression of H3 at day 3 (Figure 4F).

278 Production of Phospho-p44/42 MAPK (Erk1/2) in VIP treated hepatocytes:

Binding of VIP to its receptors initiates cAMP production and subsequent protein kinase A (PKA)³¹. A PKA-dependent phosphorylation of the GTPase Rap1 resulted in stimulation of ERKs in the presence of B-Raf in cells such as hepatocytes¹⁹. EGF at 20ng ml⁻¹ stimulated phosphorylation of ERK as early as 10 minutes, after which activation declined with time (Figure 5A). Interestingly, VIP was found to increase *p*ERK following 10 minutes incubation with hepatocytes. However, ERK activation increased further up to 60 minutes (Figure 5B). In addition, VIP stimulation of freshly isolated hepatocytes failed to elicit phosphorylation of ERK (data not shown). Both agents did not preferentially activate either pERK 1 or 2. Pre-incubation of human hepatocytes with 5µM of SB-590885 (SB), a B-RAF inhibitor prior to treatment or Rp-cAMPS (cAMP inhibitor) at 500µM was associated with inhibition of VIP

3
4
5
6
7
8
9
10
11
12
12
14 15
16 17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
58 59
<i>J J</i>

289 induced *p*ERK (Figure 5C and 5D). Interestingly, SB was found to preferentially block ERK2

290 phosphorylation to a greater extent than ERK1. Whereas inhibition of cAMP mobilization

- 291 with Rp-CAMP inhibitor blocked both ERK1 and ERK2.
- 292

1 2

VIP treatment does not support human hepatocytes specific functions:

Albumin gene expression was suppressed initially, but recovered by day 3 of incubation with EGF at a concentration of 5 ng ml⁻¹ and markedly increased at day 5 with concentrations up to 5 to 20 ng ml⁻¹ (Figure 6A). Conversely, VIP had no marked effect on albumin gene expression in human hepatocytes in this model (Figure 6B). When EGF and VIP were combined together, the stimulatory effect of EGF on albumin gene expression was significantly lower than that of EGF alone (Figure 6C).

300

Albumin levels in the supernatants dropped from a mean of $75.14 \pm \text{SD} 22.13 \text{ ng ml}^{-1}$ in the 301 first 24 hours following hepatocyte seeding to a mean of a mean of $40.24 \pm SD \ 16.82 \text{ ng ml}^{-1}$ 302 303 at day 2 and no marked change was observed subsequently. EGF stimulated production of 304 albumin from liver cells in a concentration dependent manner as compared to the untreated control at day 1 of treatment yielded a mean of $120.91 \pm \text{SD } 79.91 \text{ ng ml}^{-1}$ which continued up 305 to day 5 of treatment to reach a mean of $152.80 \pm SD 87.20 \text{ ng ml}^{-1}$ with 20ng ml⁻¹ EGF 306 307 (Figure 6D). At day 3, there was an increase in albumin production up to a mean of $66.9 \pm$ SD 76.83 ng ml⁻¹ from hepatocytes cultured in the presence of 10⁻⁶M VIP (Figure 6E). When 308 309 both agents were added together, the stimulatory effect of EGF was inhibited (Figure 6F). 310 When both agents were added sequentially, an inhibitory effect of VIP on EGF stimulated 311 albumin production was observed (Supplementary Figure 2). Urea production from 312 hepatocytes was dramatically decreased during the 24 hours following cell plating from a mean of $3.01 \pm \text{SD} \ 0.38 \text{ mg dL}^{-1}$ to a mean of $0.80 \pm \text{SD} \ 0.98 \text{ mg dL}^{-1}$, but partial recovery 313

Cell Proliferation

was observed at day 3 and 5 (a mean of $1.26 \pm \text{SD } 0.37 \text{ mg } \text{dL}^{-1}$ and $1.10 \pm \text{SD } 0.36 \text{ mg } \text{dL}^{-1}$ respectively). EGF increased urea production on the first day of hepatocyte culture compared to untreated cells (a mean of $1.31 \pm \text{SD } 0.23 \text{ mg } \text{dL}^{-1}$ at 10 ng ml⁻¹ EGF), but this effect disappeared with time (Figure 6G). However, 10^{-7} M VIP resulted in a limited increase (a mean of $1.53 \pm \text{SD } 0.51 \text{ mg } \text{dL}^{-1}$) in urea production at day 3 as compared to control (Figure 6H) and adding VIP to EGF abolished the effect of EGF on urea production in cultures hepatocytes (Figure 6I).

	321	Discussion:
	322	Our findings have shown that EGF or VIP alone has the ability to induce DNA synthesis in
	323	cultured human hepatocytes and to stimulate expression of genes that may be involved in cell
)	324	proliferation. Interestingly, EGF was able to maintain hepatocyte proliferation further up to
 <u>2</u>	325	day 5 whilst VIP did not. In addition, VIP was found to stimulate phosphorylation of ERK1
3 1	326	and 2 protein kinases. However, unlike EGF, VIP has a limited effect on hepatocyte function
5	327	in vitro.
/ 3 2	328	
) 	329	Hepatocytes move from G0 to G1 phase of cell cycle spontaneously during isolation
<u>2</u> 3	330	process ³² and progress further towards and stop at a restriction point in mid-late G1 phase
1 5	331	usually 24 and 48 h after plating ²² . Onward movement to S phase is dependent on growth
5 7	332	factors such as EGF ³³ . In agreement with that, we have demonstrated that EGF stimulated
3))	333	DNA synthesis when added 24 h following hepatocytes seeding. Strikingly, we observed a
,)	334	comparable effect with VIP which disagree to that previously reported by Kar <i>et al</i> ¹³ . The
- 3 1	335	outcome of proliferative stimuli is related to the cell cycle. A few hours following isolation,
5	336	VIP can facilitate entry of cells into G1 phase but it did not encourage them to pass the
7 3	337	restriction point ³⁴ . This effect could increase the number of cells at susceptible to the
)	338	mitogenic effect of EGF. These findings might explain why VIP alone failed to stimulate
 <u>2</u> 8	339	DNA synthesis in hepatocytes but may potentiate the effect of EGF on cell proliferation at
, 1 5	340	this early time point ^{13,22,35} . We found that VIP did activate MAPK at this early time which
5	341	consistent with that has been reported ³⁵ . The underling mechanism could involve activation
3	342	of p70 ribosomal S6 protein kinase (p70S6k) activity, cyclin D3-cyclin-dependent kinase
) I	343	(CDK)-4 assembly or a CDK2/cyclin C-dependent inhibitory phosphorylation of the
2 3	344	transcription factor LSF (late simian virus 40 factor) at serine 309 ³⁶⁻³⁸ .
+		

1		
2 3	345	As we have shown, later in culture VIP or EGF stimulated formation of pERK which has
4 5	346	been described previously ^{18,39} . This effect was found to be closely related to induction of
6 7	347	hepatocyte proliferation ¹⁷ and may involve an MAPK-dependent reactivation
8 9	348	phosphorylation of LSF at serine 291 which could be essential for cell cycle progression to S
10 11		
12 13	349	phase ⁴⁰ . Dependence of VIP induced ERK activation on B-Raf kinase could support our
14	350	hypothesis that VIP alone is able to induce hepatocyte proliferation, but VIP exerted an
15 16	351	inhibitory effect on EGF (Figure 7). In accordance with these results, it has been reported that
17 18	352	high levels of cAMP could result in a decrease in EGF-dependent MAPK production and loss
19 20 21	353	of its DNA stimulatory effect ³⁵ . In addition, several reports have shown that cAMP-
21 22 23	354	dependent PKA is able to phosphorylate EGFR on serine residues which results in decrease
24	355	in tyrosine kinase activity and EGFR auto-phosphorylation induced by EGF ^{41,42} . Moreover,
25 26	356	cAMP-GEFs can directly inhibit Raf-1 by phosphorylation at ser259 or indirectly by a PKA-
27 28		
29 30	357	dependent activation of the Raf-1 inhibitor, Akt (protein kinase B, PKB) ^{43,44} . This interaction
31 32	358	could explain the reported VIP inhibitory effect on HepG2 proliferation. HepG2 survival and
33 34	359	proliferation is depending on the presence of FBS in medium ^{45,46} . VIP has been shown to
35 36	360	inhibit HepG2 proliferation through a cAMP – dependent signal transducers and activators
37 38	361	of transcription-3 (STAT-3) pathway inhibition ¹⁶ , the pathway that can be stimulated by
39 40	362	growth factors which present in FBS.
41 42	363	
43 44	364	The DNA synthesis in primary hepatocytes started early in culture and maximised at day 3,
45	304	
46 47	365	with expression of activated transcriptional regulators for EGF and ERK pathway ⁴⁷ , but
48 49	366	decreased afterwards even in the presence of EGF ^{13,48} . Following day 3 of culture, substantial
50 51	367	hepatocyte death has been reported and the remaining cells may become flattened and
52 53	368	polykaryotic or smaller and apoptotic ³ . We have noticed that, at day 5 of EGF treatment,
54 55	369	there was a lower number of living hepatocytes, and that the remaining cells replicated, but to
55 56 57		

370	a lower extent. This is in agreement with previous findings to that has been reported
371	before ^{33,49} .
372	In our model, VIP did not show any change in hepatocyte proliferation, consistent with
373	previous work ¹³ . Notably, the cells which proliferated under theeffect of VIP mostly died by
374	day 5 of treatment and VIP did not markedly increase DNA synthesis in the remaining cells.
375	The lack of support of the differentiated state of hepatocytes with VIP treatment was
376	observed from the albumin production and urea secretion at day 5, a finding that has been
377	previously reported ⁹ . Interestingly, MKI-67 and H3 mRNA expression in hepatocytes showed
378	a tendency to increase at day 5 of treatment while albumin expression decreased with time,
379	which may be an indication of a loss of differentiation.
380	
381	The dramatic change in hepatocyte response to VIP could be a consequence of changes in
382	VIP receptors expression. We found that hepatocytes did not show such a change in
383	expression of VPAC1 during culture time course. However, VIP failed to induce cAMP
384	production in hepatocytes at day 5 of cell culture, which suggests an alteration of receptor
385	signaling response. Indeed, the interaction between VIP and its receptors in proliferating
386	hepatocytes is not completely understood. In rat liver 3 days after PH, the maximal response
387	of VIP was reduced as a result of low number of receptors and changes in the receptor
388	structure ⁵⁰ . In addition, the decrease in VIP receptors sensitivity could be a result of high
389	expression of VIP in proliferating liver ¹³ . Moreover, VPAC1 harbours several potential N-
390	glycosylation sites which are critical for VIP binding ⁵¹ and receptor delivery to plasma
391	membrane ⁵² . An alteration in <i>N</i> -glycosylation of proteins has been reported in de-
392	differentiated rat hepatocytes ⁵³ , and could explain the decreased in VPAC1 response to VIP,
393	but this possibility needs further investigations. In addition, we have demonstrated that

2	
3	
4	
5	
ر د	
6 7 8	
/	
8	
9	
10	
11	
12	
13	
14	
14	
15	
16	
17	
18	
19	
20	
12 13 14 15 16 17 18 19 20 21	
22	
23	
23	
24 25	
25	
26	
26 27	
28 29 30	
29	
30	
31	
32	
33	
33	
34 35	
35	
36 37	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
50	
51 52	
53	
54	
55	
56	
57	
58	
50	

60

addition of high concentration of VIP was associated with downregulation of VPAC1, the
phenomenon that has been reported with VIP with other cell types^{54,55}.
Our findings have demonstrated that VIP alone was able to induce proliferation of adult
human hepatocytes when added 24 hours following hepatocyte platting and this effect may be
PKA/B-Raf-ERK dependent. VIP exerts an inhibitory effect on EGF signaling pathway at
this time point of cell cycle. Stimulation of the VIP pathway may aid hepatocyte proliferation *in vitro*.

401

402 Acknowledgements:

We are grateful to all patients who donated tissues involved in this study. The assistance
provided by Hepato-Pancreato-Biliary (HPB) surgery team members, Southampton General
Hospital in choice and supplying suitable liver tissue samples, is gratefully acknowledged.
This work was supported by grants from Liver and Pancreatic Cancer Research &
Development Charity and University of Southampton, UK.

408

409 **Conflict of interest:**

410 All authors declare no conflict of interest.

2 3	411	References:
4 5	412	1. Bilir BM, Guinette D, Karrer F, et al. Hepatocyte transplantation in acute liver failure.
6 7	413	<i>Liver Transpl</i> 2000;6(1):32-40.
8 9 10	414	2. Grossman M, Raper SE, Kozarsky K, et al. Successful ex vivo gene therapy directed to
11 12	415	liver in a patient with familial hypercholesterolaemia. Nat Genet 1994;6(4):335-41.
13 14	416	3. Chen Y, Wong PP, Sjeklocha L, et al. Mature hepatocytes exhibit unexpected plasticity by
15 16	417	direct dedifferentiation into liver progenitor cells in culture. <i>Hepatology</i> 2012;55(2):563-74.
17 18	418	4. Hewitt NJ. Optimisation of the Cryopreservation of Primary Hepatocytes. Hepatocytes:
19 20	419	Methods and Protocols 2010;640:83-105.
21 22 22	420	5. Guijarro LG, Couvineau A, Rodriguez-Pena MS, et al. Vasoactive intestinal peptide
23 24 25	421	receptors in rat liver after partial hepatectomy. Biochem J 1992;285 (Pt 2):515-20.
26 27	422	6. Couvineau A, Voisin T, Guijarro L, et al. Purification of Vasoactive-Intestinal-Peptide
28 29	423	Receptor from Porcine Liver by a Newly Designed One-Step Affinity-Chromatography.
30 31	424	Journal of Biological Chemistry 1990;265(22):13386-90.
32 33	425	7. Nguyen TD, Williams JA, Gray GM. Vasoactive-Intestinal-Peptide Receptor on Liver
34 35 26	426	Plasma-Membranes - Characterization as a Glycoprotein. <i>Biochemistry</i> 1986;25(2):361-68.
36 37 38	427	8. Feliu JE, Mojena M, Silvestre RA, et al. Stimulatory Effect of Vasoactive Intestinal
39 40	428	Peptide on Glycogenolysis and Gluconeogenesis in Isolated Rat Hepatocytes - Antagonism
41 42	429	by Insulin. Endocrinology 1983;112(6):2120-27.
43 44	430	9. Leiser J, Blum JJ. Effects of VIP and forskolin on alanine metabolism in isolated
45 46	431	hepatocytes. FEBS Lett 1984;173(2):407-13.
47 48	432	10. Richardson PD, Withrington PG. Liver blood flow. II. Effects of drugs and hormones on
49 50 51	433	liver blood flow. Gastroenterology 1981;81(2):356-75.
52 53	434	11. Arranz A, Juarranz Y, Leceta J, et al. VIP balances innate and adaptive immune responses
54 55	435	induced by specific stimulation of TLR2 and TLR4. <i>Peptides</i> 2008;29(6):948-56.
56 57		
58 59		Page 20 of 29
<u> </u>		Cell Proliferation

Page 21 of 49

1 2

3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16 17	
18	
19	
20	
21 22 23 24	
23	
24	
25	
26	
26 27	
28	
29	
30	
30 31	
32	
32 33	
34 35	
35	
36 37	
3/	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

436	12. Vetrini F, Brunetti-Pierri N, Palmer DJ, et al. Vasoactive intestinal peptide increases
437	hepatic transduction and reduces innate immune response following administration of helper-
438	dependent Ad. Mol Ther 2010;18(7):1339-45.
439	13. Kar S, Hasegawa K, Carr BI. Comitogenic effects of vasoactive intestinal polypeptide on
440	rat hepatocytes. J Cell Physiol 1996;168(1):141-6.
441	14. Alleaume C, Eychene A, Caigneaux E, et al. Vasoactive intestinal peptide stimulates
442	proliferation in HT29 human colonic adenocarcinoma cells: concomitant activation of
443	Ras/Rap1-B-Raf-ERK signalling pathway. Neuropeptides 2003;37(2):98-104.
444	15. Goursaud S, Pineau N, Becq-Giraudon L, et al. Human H9 cells proliferation is
445	differently controlled by Vasoactive Intestinal Peptide or Peptide Histidine methionine:
446	implication of a GTP-insensitive form of VPAC(1) receptor. Journal of Neuroimmunology
447	2005;158(1-2):94-105.
448	16. Absood A, Hu B, Bassily N, et al. VIP inhibits human HepG2 cell proliferation in vitro.
449	<i>Regul Pept</i> 2008;146(1-3):285-92.
450	17. Fremin C, Ezan F, Boisselier P, et al. ERK2 but not ERK1 plays a key role in hepatocyte
451	replication: an RNAi-mediated ERK2 knockdown approach in wild-type and ERK1 null
452	hepatocytes. <i>Hepatology</i> 2007;45(4):1035-45.
453	18. Talarmin H, Rescan C, Cariou S, et al. The mitogen-activated protein kinase
454	kinase/extracellular signal-regulated kinase cascade activation is a key signalling pathway
455	involved in the regulation of $G(1)$ phase progression in proliferating hepatocytes. <i>Mol Cell</i>
456	<i>Biol</i> 1999;19(9):6003-11.
457	19. Dugan LL, Kim JS, Zhang YJ, et al. Differential effects of cAMP in neurons and
458	astrocytes - Role of B-raf. Journal of Biological Chemistry 1999;274(36):25842-48.

2 3	459	2
4 5	460	Ι
6 7		
8	461	1
9 10	462	2
11 12	463	S
13 14	464	(
15 16	465	2
17 18	466	а
19 20	467	1
21 22	468	2
23 24	469	
25 26		n
27	470	2
28 29	471	p
30 31	472	2
32 33		
34	473	h
35 36	474	2
37 38	475	p
39 40	476	a
41 42	477	2
43 44	478	d
45 46	479	а
47 48	480	2
49 50	481	f
51 52		
53 54	482	2
55		
56 57		
58		
59 60		
60		

459 20. Barnier JV, Papin C, Eychene A, et al. The Mouse B-Raf Gene Encodes Multiple Protein

- 460 Isoforms with Tissue-Specific Expression. *Journal of Biological Chemistry*
- 461 1995;270(40):23381-89.
- 462 21. Gomez-Lechon MJ, Lopez P, Donato T, et al. Culture of human hepatocytes from small
- 463 surgical liver biopsies. Biochemical characterization and comparison with in vivo. In Vitro
- 464 *Cell Dev Biol* 1990;26(1):67-74.
- 465 22. Loyer P, Cariou S, Glaise D, et al. Growth factor dependence of progression through G1
- 466 and S phases of adult rat hepatocytes in vitro. Evidence of a mitogen restriction point in mid-
 - 467 late G1. Journal of Biological Chemistry 1996;271(19):11484-92.
- 468 23. Vinken M, Decrock E, Doktorova T, et al. Characterization of spontaneous cell death in
- 469 monolayer cultures of primary hepatocytes. *Arch Toxicol* 2011;85(12):1589-96.
- 470 24. Smets FN, Chen Y, Wang LJ, et al. Loss of cell anchorage triggers apoptosis (anoikis) in
- 471 primary mouse hepatocytes. *Mol Genet Metab* 2002;75(4):344-52.
- 472 25. Arterburn LM, Zurlo J, Yager JD, et al. A morphological study of differentiated
- 473 hepatocytes in vitro. *Hepatology* 1995;22(1):175-87.
- 474 26. Wang L, Xiao Q, Wang CH, et al. Vasoactive intestinal polypeptide suppresses
- 475 proliferation of human cord blood-derived hematopoietic progenitor cells by increasing TNF-
- 476 alpha and TGF-beta production in the liver. *Genet Mol Res* 2014;13(4):9032-43.
- 477 27. Block GD, Locker J, Bowen WC, et al. Population expansion, clonal growth, and specific
- 478 differentiation patterns in primary cultures of hepatocytes induced by HGF/SF, EGF and TGF
- 479 alpha in a chemically defined (HGM) medium. *Journal of Cell Biology* 1996;132(6):1133-49.
- 480 28. Langer I, Leroy K, Gaspard N, et al. Cell surface targeting of VPAC1 receptors: evidence
- 481 for implication of a quality control system and the proteasome. *Biochim Biophys Acta*
- 482 2008;1783(9):1663-72.

Page 22 of 29

2 3	483	29. Endl E, Gerdes J. The Ki-67 protein: fascinating forms and an unknown function. Exp
4 5 6	484	Cell Res 2000;257(2):231-7.
6 7 8	485	30. Gurley LR, D'Anna JA, Barham SS, et al. Histone phosphorylation and chromatin
9 10	486	structure during mitosis in Chinese hamster cells. Eur J Biochem 1978;84(1):1-15.
11 12	487	31. Langer I, Robberecht P. Molecular mechanisms involved in vasoactive intestinal peptide
13 14	488	receptor activation and regulation: current knowledge, similarities to and differences from the
15 16	489	A family of G-protein-coupled receptors. Biochem Soc Trans 2007;35(Pt 4):724-8.
17 18	490	32. Paine AJ, Andreakos E. Activation of signalling pathways during hepatocyte isolation:
19 20 21	491	relevance to toxicology in vitro. Toxicol In Vitro 2004;18(2):187-93.
22 23	492	33. Corlu A, Loyer P. Regulation of the g1/s transition in hepatocytes: involvement of the
24 25	493	cyclin-dependent kinase cdk1 in the DNA replication. Int J Hepatol 2012;2012:689324.
26 27	494	34. Anderson P, Gonzalez-Rey E. Vasoactive Intestinal Peptide Induces Cell Cycle Arrest
28 29	495	and Regulatory Functions in Human T Cells at Multiple Levels. Molecular and Cellular
30 31	496	Biology 2010;30(10):2537-51.
32 33 24	497	35. Thoresen GH, Johansen EJ, Christoffersen T. Effects of cAMP on ERK mitogen-
34 35 36	498	activated protein kinase activity in hepatocytes do not parallel the bidirectional regulation of
37 38	499	DNA synthesis. Cell Biology International 1999;23(1):13-20.
39 40	500	36. Withers DJ. Signalling pathways involved in the mitogenic effects of cAMP. Clin Sci
41 42	501	(Lond) 1997;92(5):445-51.
43 44	502	37. Depoortere F, Van Keymeulen A, Lukas J, et al. A requirement for cyclin D3-cyclin-
45 46 47	503	dependent kinase (cdk)-4 assembly in the cyclic adenosine monophosphate-dependent
47 48 49	504	proliferation of thyrocytes. Journal of Cell Biology 1998;140(6):1427-39.
50 51	505	38. Hansen U, Owens L, Saxena UH. Transcription factors LSF and E2Fs: tandem cyclists
52 53 54 55	506	driving G0 to S? Cell Cycle 2009;8(14):2146-51.
56 57		

Cell Proliferation

3	
4	
5	
6	
/	
8	
9	
10	
11	
12	
13	
11	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
23	
24 25	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
55 56	
57	
58	
59	
60	

507 39. Fernandez M, Sanchez-Franco F, Palacios N, et al. IGF-I and vasoactive intestina	l peptide
--	-----------

- 508 (VIP) regulate cAMP-response element-binding protein (CREB)-dependent transcription via
- 509 the mitogen-activated protein kinase (MAPK) pathway in pituitary cells: requirement of
- 510 Rap1. J Mol Endocrinol 2005;34(3):699-712.
- 511 40. Pagon Z, Volker J, Cooper GM, et al. Mammalian transcription factor LSF is a target of
- 512 ERK signaling. Journal of Cellular Biochemistry 2003;89(4):733-46.
- 513 41. Rackoff WR, Rubin RA, Earp HS. Phosphorylation of the hepatic EGF receptor with
- 514 cAMP-dependent protein kinase. *Mol Cell Endocrinol* 1984;34(2):113-9.
- 515 42. Barbier AJ, Poppleton HM, Yigzaw Y, et al. Transmodulation of epidermal growth factor
- 516 receptor function by cyclic AMP-dependent protein kinase. *Journal of Biological Chemistry*
 - 517 1999;274(20):14067-73.
- 518 43. Zhang B, Nweze I, Lakshmanan J, et al. Activation of a cyclic amp-guanine exchange
- 519 factor in hepatocytes decreases nitric oxide synthase expression. *Shock* 2013;39(1):70-6.
- 520 44. Zimmermann S, Moelling K. Phosphorylation and regulation of Raf by Akt (protein
- 521 kinase B). *Science* 1999;286(5445):1741-4.
- 522 45. Biaggio RT, Abreu-Neto MS, Covas DT, et al. Serum-free suspension culturing of human
- 523 cells: adaptation, growth, and cryopreservation. *Bioprocess and Biosystems Engineering*
- 524 2015;38(8):1495-507.
 - 525 46. Zhuge J, Cederbaum AI. Serum deprivation-induced HepG2 cell death is potentiated by
 - 526 CYP2E1. Free Radical Biology and Medicine 2006;40(1):63-74.
 - 527 47. Heslop JA, Rowe C, Walsh J, et al. Mechanistic evaluation of primary human hepatocyte
- 528 culture using global proteomic analysis reveals a selective dedifferentiation profile. Arch
 - 529 *Toxicol* 2017;91(1):439-52.

2	
2 3	
4 5	
6 7 8	
9	
10 11 12	
12 13 14	:
14 15 16	
10 17 18	
19	-
20 21 22	
22 23 24	
20 21 22 23 24 25 26 27 28 29	:
20 27 28	
29 30	
31 32	
33 34	
35 36	
37 38	:
39 40	
41 42	
43 44	
45 46	
47 48	
49 50	
51 52	
53 54	
55 56	
57 58	
59 60	

530	48. Enat R, Jefferson DM, Ruiz-Opazo N, et al. Hepatocyte proliferation in vitro: its
531	dependence on the use of serum-free hormonally defined medium and substrata of
532	extracellular matrix. Proc Natl Acad Sci USA 1984;81(5):1411-5.
533	49. Mitaka T, Norioka K, Mochizuki Y. Redifferentiation of proliferated rat hepatocytes
534	cultured in L15 medium supplemented with EGF and DMSO. In Vitro Cell Dev Biol Anim
535	1993;29A(9):714-22.
536	50. Guijarro LG, Couvineau A, Rodriguez-Pena MS, et al. Comitogenic effects of vasoactive
537	intestinal polypeptide on rat hepatocytes. Biochem J 1992;285 (Pt 2):515-20.
538	51. Gaudin P, Couvineau A, Maoret JJ, et al. Mutational Analysis of Cysteine Residues
539	within the Extracellular Domains of the Human Vasoactive-Intestinal-Peptide (Vip) 1-
540	Receptor Identifies 7 Mutants That Are Defective in Vip Binding. Biochemical and
541	Biophysical Research Communications 1995;211(3):901-08.
542	52. Couvineau A, Fabre C, Gaudin P, et al. Mutagenesis of N-glycosylation sites in the
543	human vasoactive intestinal peptide 1 receptor. Evidence that asparagine 58 or 69 is crucial
544	for correct delivery of the receptor to plasma membrane. <i>Biochemistry</i> 1996;35(6):1745-52.
545	53. Mehta A, Comunale MA, Rawat S, et al. Intrinsic hepatocyte dedifferentiation is
546	accompanied by upregulation of mesenchymal markers, protein sialylation and core alpha 1,6
547	linked fucosylation. Scientific Reports 2016;6.
548	54. Boissard C, Marie JC, Hejblum G, et al. Vasoactive-Intestinal-Peptide Receptor
549	Regulation and Reversible Desensitization in Human Colonic-Carcinoma Cells in Culture.
550	Cancer Research 1986;46(9):4406-13.
551	55. Elbattari A, Luis J, Martin JM, et al. The Glycoprotein Nature of the Vasoactive Intestinal
552	Peptide Binding-Site - Role of Carbohydrates in Vip Binding on Ht-29-D4 Cells. Annals of
553	the New York Academy of Sciences 1988;527:667-71.

554 Figures' Legends:

Figure 1 Hepatocyte proliferation was stimulated by EGF or VIP. (A) Representative images of hepatocytes treated with either EGF (20 ng ml⁻¹) or VIP (10⁻⁶ M) for 3 days. DNA incorporation of BrdU was determined (Green) and DAPI (Blue) was used as a nuclear counter stain. (B - E) The effects of EGF or VIP were demonstrated on total and proliferating cell numbers. n = 3 different donors per condition. P values shown in the graph are for comparison to hepatocytes maintained on medium alone. * P<0.05, ** P<0.005, *** $P \le 0.0005$, **** $P \le 0.0001$. Mean \pm SEM. Two-way ANOVA followed by Fisher's least significant difference (LSD).

Figure 2 Hepatocyte viability with EGF or VIP. (A) LDH activity (U ml⁻¹) in supernatants of untreated human hepatocytes with time course. (B) LDH release (expressed as percentage of total LDH activity) in supernatants of human hepatocytes treated with EGF or (C) VIP at previous concentrations following day 1, 3 and 5 of treatments. n = 3 different donors per condition. P values shown in the graph are for overall comparison with hepatocytes at day 0 (A) or untreated control (B and C). * P < 0.05, ** P < 0.005, *** P < 0.0005, **** P < 0.0001. (D) Viable cells were detected following addition of EGF $(5, 10 \text{ or } 20 \text{ ng ml}^{-1})$ or (E) VIP $(10^{-8}, 10^{-7} \text{ or } 10^{-6} \text{ M})$ treatment for 3 or 5 days by MTT assay. A, Absorbance. n = 3 different donors per condition. P values shown in the graph are for overall comparison between hepatocytes at day 3 and 5. Mean \pm SEM. Two-way ANOVA followed by Fisher's LSD.

575 Figure 3 The effect of DMSO on cell response to VIP and VIP and pituitary adenylate 576 cyclase-activating polypeptide receptor-1 (VPAC1) expression and activation in 577 hepatocytes. (A and B) Hepatocytes were treated with either EGF (5, 10 or 20 ng ml⁻¹) or 578 VIP (10⁻⁸, 10⁻⁷ or 10⁻⁶ M), 2 % DMSO was added at day 3 and cell proliferation was

Cell Proliferation

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
50	

60

579	investigated at day 5 using the WST-1 Quick Cell Proliferation Assay kit II (Abcam). $n = 3$
580	different donors per condition. P values shown in the graph are for comparison at individual
581	concentrations and overall comparison with hepatocytes maintained in medium without
582	DMSO. (C) Band density analysis (fold change) of VPAC1 and Epidermal Growth Factor
583	Receptor (EGFR) mRNA of gene expression on 2% agarose gel in non-treated cells
584	following 1, 3 or 5 days of hepatocyte culture (6 donors), (D) VPAC1 protein expression as
585	detected in hepatocytes by western blotting techniques at day 3 and 5 of hepatocyte culture, a
586	representative blot of 3 independent experiments. Molecular weights were indicated for
587	VPAC1 isoforms. (E) Effect of VIP (10^{-6} M) on cAMP concentrations (μ M μ g ⁻¹ of protein) in
588	hepatocytes with time course control (ctrl.). $n = 3$. * $P < 0.05$, ** $P < 0.005$. Mean \pm SEM.
589	Two-way ANOVA followed by Fisher's LSD.

590

591 Figure 4 Expression of Monoclonal Antibody Ki-67 (MKI-67) and Histone Cluster 3 592 (H3) genes in human hepatocytes cultured in the presence of EGF or VIP. Expression of mRNA was quantified by qPCR at days 1, 3 and 5 of EGF (5, 10 or 20 ng ml⁻¹) or VIP (10^{-8} , 593 10^{-7} or 10^{-6} M). (A – D) Concentration dependant effects of EGF or VIP, and (E and F) the 594 effect of EGF (20 ng ml⁻¹) or VIP (10⁻⁶ M) or a combination of both. n = 3 different donors 595 596 per condition. P values shown in the graph are for comparison at individual concentrations 597 and overall comparison with hepatocytes at day 1. * P<0.05, ** P<0.005, *** P<0.0005. 598 Mean \pm SEM. Two-way ANOVA followed by Fisher's LSD.

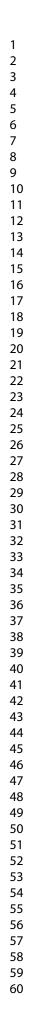

599

Figure 5 Phosphorylation of ERK in EGF or VIP-treated human hepatocytes analysis using western blotting. (A) Hepatocytes treated with either EGF (20 ng ml⁻¹) or (B) VIP (10^{-6} M) and analysed by western blotting at indicated time points. (C) The effects of downstream pathway inhibitors was investigated using 2.5 - 10 μ M of SB-590885 (SB) or (D) 500 μ M of *Rp-cAMPS*. Hepatocytes were incubated with inhibitors for 1 h prior to addition of EGF or 605 VIP for another 1 h. n = 4 with different donors.

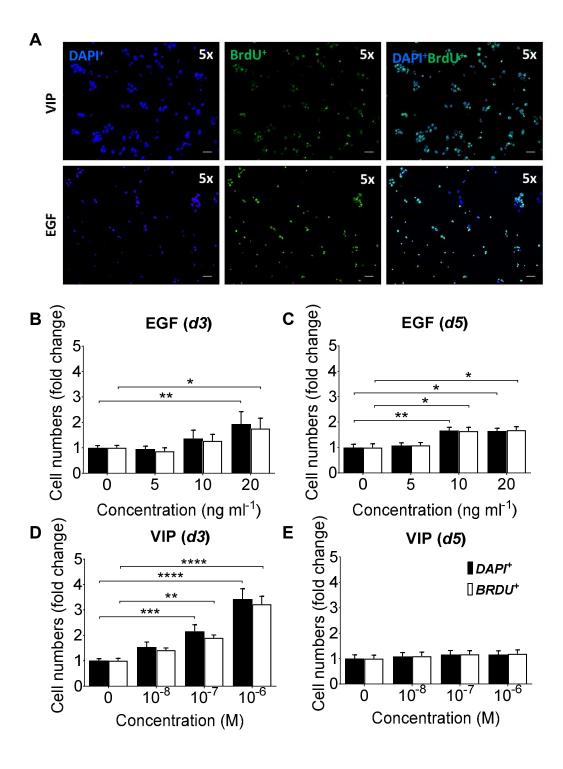
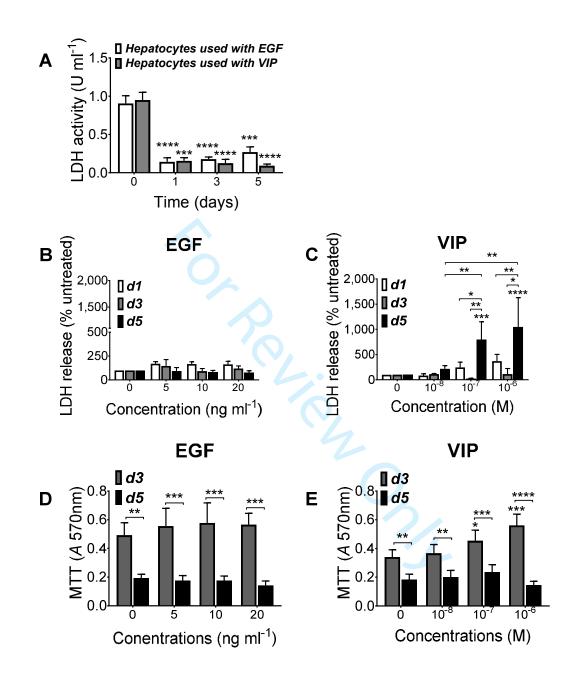
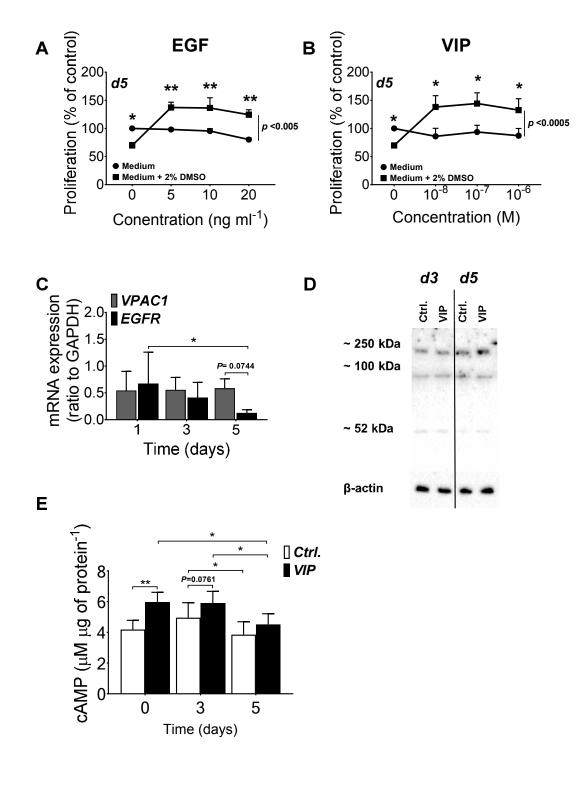
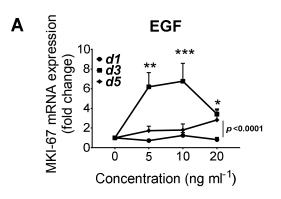
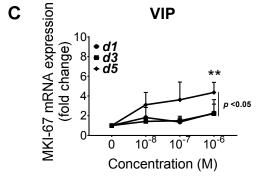

 Figure 6 Expression and production of albumin, and urea from human hepatocytes cultured with EGF and VIP. Albumin gene mRNA expression at days 0, 1, 3 and 5 of (A) EGF (5, 10 or 20 ng ml⁻¹) or (B) VIP (10^{-8} , 10^{-7} or 10^{-6} M) treatments, and (C) the effects of either EGF (20 ng ml⁻¹), VIP (10^{-6} M) or combination of both were determined. P values shown in the graph are for comparison at individual concentrations and overall comparison with hepatocytes at day 1. (D – F) Albumin (ng ml⁻¹) and (G – I) urea (mg dL⁻¹) concentrations in supernatants of cultured hepatocytes with EGF, VIP or both were determined. n = 3 different donors per condition. P values shown in the graph are for comparison with hepatocytes at day 0 or with untreated cells. * P<0.05, ** P<0.005, *** P < 0.0005, **** P < 0.0001. Mean \pm SEM. Two-way ANOVA followed by Fisher's LSD.

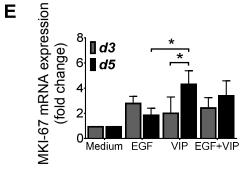
Figure 7 A schematic diagram for VIP and EGF signaling in hepatocytes. Late in culture, binding of VIP with the G-protein coupled VIP receptor type 1 (VPAC1) activates intracellular adenylyl cyclase (AC) resulting in cAMP production and the following protein kinase A (PKA) activation. Subsequently, phosphorylated Rap-1 can activate B-Raf and thereby, stimulate the mitogen-activated protein kinase (MAPK) / extracellular signal-regulated kinase (ERK) kinase, MEK/ERK cascade. Phosphorylation of ERK1/2 results in stimulation of cell proliferation and induces mRNA expression the proliferation-associated genes, the monoclonal antibody Ki-67 (MKI-67) and Histone Cluster-3 (H3) genes. EGF interaction with its receptors, EGFR results in a Ras/Raf dependent activation of MEK, induction of cell proliferation and improvement of cell functions. VIP-activated Rap-1 may block EGF signaling through inhibition of Ras/Raf activation. VIP signaling can be inhibited

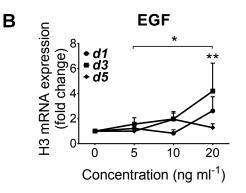

2 3	629	by the B-RAF inhibitor, SB-590885 and PKA inhibitor, Rp-cAMP triethylammonium salt
4 5 6	630	(Rp-cAMPS).
7 8		
9 10		
11 12		
13 14		
15 16		
17 18 19		
20 21		
22 23		
24 25		
26 27		
28 29 30		
31 32		
33 34		
35 36		
37 38 39		
40 41		
42 43		
44 45		
46 47		
48 49 50		
50 51 52		
53 54		
55 56		
57 58		Page 29 of 29
59 60		Cell Proliferation

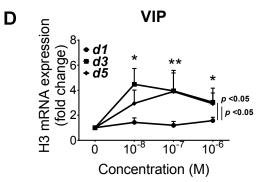


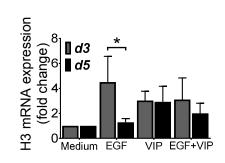


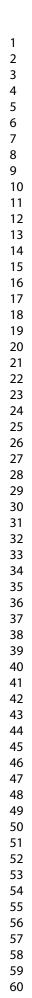


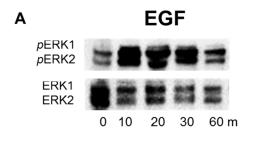


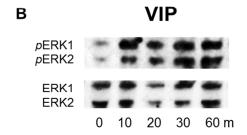


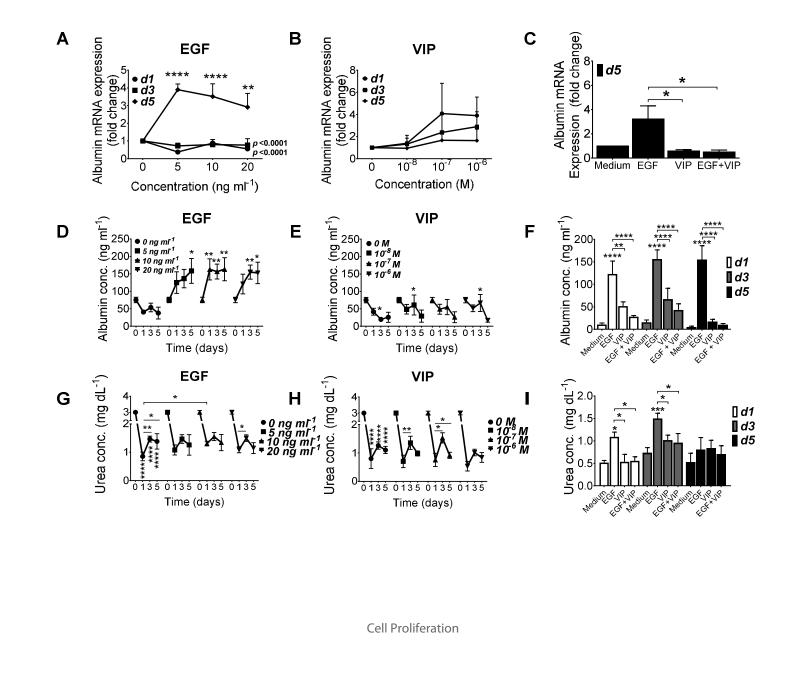


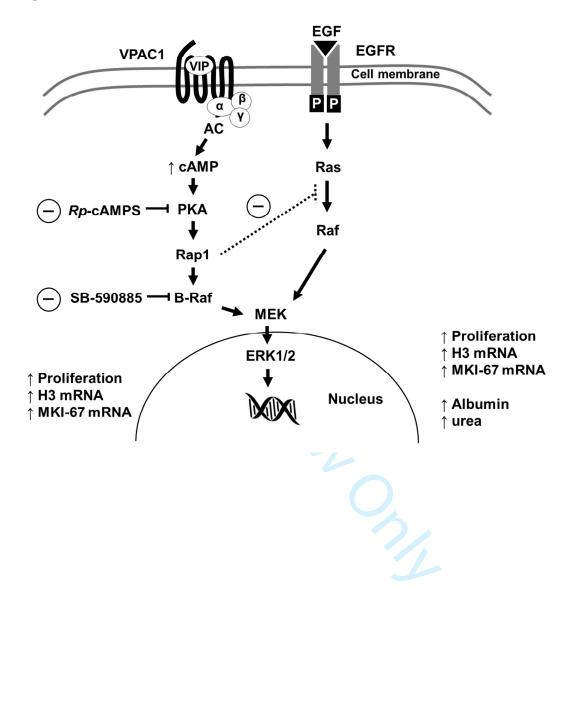







F




	D	pERK1 pERK2	-	-	-		
		ERK1 ERK2	şti	-	12	-	
0 m		VIP	-	+	-	+	
		Rp-CAMPS	-	-	+	+	

Page 35 of 49

Figure 6

Cell Proliferation

2	1	Vagagetive intestingly postide (VID) induces preliferation of human honotoxytes	
3 4	$\frac{1}{2}$	Vasoactive intestinal peptide (VIP) induces proliferation of human hepatocytes	
5	-		
6 7	3	Mogibelrahman M.S. Khedr ^{1,2} , Ahmed M. Abdelmotelb ¹ , Thomas A. Bedwell ¹ , Ana	ın
8 9	4	Shtaya ⁴ , Mohammad N. Alzoubi ^{3,5} , Mohammed Abu Hilal ^{1,5} , and Salim I. Khakoo ^{1,5} .	
10 11	5		
12 13	6	¹ Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University	of
14 15	7	Southampton, Southampton, United Kingdom. ² Faculty of Medicine, Suez Canal Universit	y,
16 17	8	Ismailia, Egypt. ³ St George's University of London, London, United Kingdom. ⁴ University	of
18 19 20	9	Jordan, Amman, Jordan. ⁵ Southampton University Hospitals NHS Trust, Southampto	n,
21 22	10	United Kingdom.	
23 24 25	11	Table of contents	
26	12	Materials and Methods:2	
27 28	13	Isolation of human hepatocytes:	2
29 30	14	5-Bromo-2'-deoxyuridine (BrdU) DNA incorporation assay:	3
31	15	Measurement of lactic dehydrogenase (LDH):	
32 33	16	Viability assay:	4
34	17	Total RNA extraction and Reverse Transcription Polymerase Chain Reaction (RT-PCR):	4
35 36	18	Polymerase chain reaction (PCR) and Real time PCR (rt-PCR):	5
37 38	19	Detection of Phospho-p44/42 MAPK (Erk1/2) and VPAC1 in hepatocytes:	6
39	20	Gel electrophoresis:6	
40 41	21	Western blotting:6	
42	22	cAMP Direct Immunoassay:	7
43 44	23	Albumin ELISA:	7
45 46	24	Urea concentration assay:	8
47	25	References:9	
48 49	26		
50 51	27		
52			
53 54			
54 55			
56			
57 58		Supplementary Data 1 Page 1 of	· 9
			/

28 Materials and Metho

29 Isolation of human hepatocytes:

Tissue samples (2-10gm) were obtained from fresh surgical macroscopically normal liver tissue derived from resections from patients undergoing hepatectomies. Experimental procedures were performed according to the Health Research Authority (HRA), Research Ethics Committee (REC) North East - Newcastle & North Tyneside 2 (REC ref. 13/NE/0070) with informed consent. A total of 46 human liver cell preparations from 39 different donors have liver primary or secondary metastatic tumors (24 men and 15 women) were used. Patients' ages ranged from 29 to 83 years. Hepatocytes were isolated using a two-step perfusion procedure as described previously¹ with some modifications. Liver tissue was washed for 10 minutes with a calcium chelating buffer [1x Hanks' balanced salt solution (HBSS), 25 mM (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) (HEPES) and 0.5mM Ethylene glycol-bis (2-aminoethylether)-N,N,N',N'-tetra acetic acid (EGTA)]. Specimens were digested using 0.05% collagenase in Dulbecco's Modified Eagle Medium (DMEM) with 1 mM CaCl₂ for 10 to 15 minutes and collagenase activity was stopped by adding an equal volume of cold medium containing 10% fetal bovine serum (FBS). Following mechanical disruption, the cell suspension was filtered through a 70µm pore nylon mesh and then spun at 50g/5 minutes 3 times at 4°C before the cell pellets were collected. Cell number and viability were determined by trypan blue exclusion using a Lecia DMIL inverted microscope (Leica Microsystems, Wetzlar, Germany). Average cell yield was $1,29 \times 10^6 \pm \text{SEM}$ 193,540 cell per gm of liver tissue. Specimens with cell viability >85% by were chosen for subsequent experiments. Cells were plated at density of $1.5 - 2.5 \times 10^5$ cell cm⁻¹ on mouse collagen type IV gel laver 1 - 2.5 μ g cm⁻² (Corning Ltd., Flintshire, UK) in William's E medium supplemented with 5% FBS (to facilitate cell adhesion) in Plating Supplement Pack (Thermo Fisher, Inchinnan, UK) and incubated at 37° C in a humidified incubator with 5% CO₂. 6 – 12

Page 39 of 49

Cell Proliferation

hours later, medium (containing non-attached hepatocytes) was aspirated and cells were
maintained in William's E medium supplemented with serum free Maintenance Supplement
Pack (Thermo Fisher). Medium has been changed every 3 days.

5-Bromo-2'-deoxyuridine (BrdU) DNA incorporation assay:

EGF (Sigma, Gillingham, UK) at 5, 10 and 20ng ml⁻¹ or VIP (Sigma) at 10⁻⁸, 10⁻⁷ or 10⁻⁶M was added to the medium 24 hours following cell seeding. Assays were performed in quadruplicates. Hepatocytes were incubated with BrdU (10ug ml⁻¹, Sigma) for 2 hours at 37°C. Cells were washed for 5 minutes with Phosphate buffered saline (PBS) 3 times and fixed with ice-cold methanol for 30 minutes at 4°C. The nuclear membrane was permeabilised by using 2M HCl for 30 min at 37°C and acid was neutralised using an equal volume of 0.1M sodium borate for 2 minutes. Non-specific reactivity was blocked with 5% Donkey Serum in PBS with 0.1% Triton-X (PBS-T) for 30 minutes at room temperature and then washed as before with 1 x PBS-T. Rat anti-BrdU antibody (Bio-Rad, Hertfordshire, UK) was used to detect DNA-integrated BrdU, 1µg ml⁻¹ in PBS-T for 1 hour at room temperature and subsequently donkey anti-rat IgG-Alexa 488 (Thermo Fisher) 4µg ml⁻¹ in PBS-T. Cells were incubated with 1µg ml⁻¹ 4'-6-diamidino-2-phenylindole, DAPI (Sigma) in water for 5 minutes in the dark and washed with PBS, then analysed by fluorescence microscopy. The numbers of BrdU⁺ cells were determined in 6 different high power fields per well against DAPI⁺ cells using an inverted Olympus IX81 fluorescent microscope with Olympus xcellence software version 01.2 (Olympus Life Science Solutions, Tokyo, Japan).

75 Measurement of lactic dehydrogenase (LDH):

Aliquots of substrate solution [100 μ l INT + P-Iodonitrotetrazolium Violet (33mg ml⁻¹ in DMSO) + 100 μ l PMS, Phenazine methosulfate (9 mg ml⁻¹) + 2.3 ml β -nicotinamide adenine

Cell Proliferation

dinucleotide (NAD) hydrate (3.74 mg ml⁻¹)] were freshly prepared. Equal volumes of 200mM Tris (hydroxymethyl)aminomethane (Tris) pH 8, 50mM Lithium lactate, substrate solution and samples or positive control (5 μ g ml⁻¹ L-Lactic Dehydrogenase from bovine heart) were loaded into an assay plate. The V_{max} was measured at 490nm for 10min. LDH activity (U ml⁻¹) and LDH release in the supernatants (expressed as percentage of total cellular LDH activity) were calculated.

Viability assay:

Viability was determined using a colourimetric MTT assay (Sigma) according to the manufacturers instruction. Cells (2x10⁵ cell/well) were seeded in duplicate into 96-well plates and treated with various concentrations of EGF or VIP for 3 or 5 days. Viable cells were detected by measuring the absorbance at 570nm in a SpectraMax® Plus 384 Microplate Reader (Molecular Devices, Wokingham, UK). The water-soluble tetrazolium salts (WST-1) Quick Cell Proliferation Assay kit II (Abcam, Cambridge, UK) were used according to manufacturer instructions. Absorbance was detected at 440nm.

94 Total RNA extraction and Reverse Transcription Polymerase Chain Reaction (RT-

PCR):

96 RNA extraction was performed using a microspin column extraction kit (RNeasy® mini kit) 97 (Qiagen, Crawley, West Sussex, UK) following the manufacturer's instructions. RNA 98 quantity and purity was assessed using a NanoDrop® ND-1000 spectrophotometer (Thermo 99 Scientific). The ratio of 260nm and 280nm absorbance readings (A260/A280) of 1.8 to 2.0 100 was considered as an acceptable indicator of nucleic acid purity. Complementary DNA 101 (cDNA) was synthesised using a Primer Design Precision nanoScript 2 reverse transcriptase 102 kit (Millbrook, Southampton, UK) according to the manufacturer's instructions in a

Cell Proliferation

2 3	103	MasterCycler® 480 thermocycler (Eppendorf, Hamburg, Germany). The cDNA was stored at
4 5	104	-20°C until use.
6 7 8	105	
8 9 10	106	Polymerase chain reaction (PCR) and Real time PCR (rt-PCR):
11 12	107	The rt-PCR Primers were designed using the ProbeFinder software v2.5
13 14	108	(Lifescience.roche.com) ² . Oligonucleotide primers were obtained from Eurofins
15 16	109	MWG/operon (Ebersberg, Germany) and their sequences as following: Human Albumin
17 18	110	(NM_000477.5) F: 5'-GTGAGGTTGCTCATCGGTTT -3' and R: 5'-
19 20 21	111	GAGCAAAGGCAATCAACACC -3'), Antigen Identified By Monoclonal Antibody Ki-67,
21 22 23	112	MKI-67 (NM_002417.4) F: 5'-TCAAGGAACTGATTCAGGAGAAG -3' and R: 5'-
24 25	113	GTGCACTGAAGAACACATTTCC-3'), Histone Cluster 3, H3 (NM_003493.2) F: 5'-
26 27	114	GAGCTGCTAATCCGCAAGTT -3' and R: 5'-GCGCAGGTCGGTCTTAAA -3'),
28 29	115	Vasoactive Intestinal Peptide Receptor 1, VIP and pituitary adenylate cyclase-activating
30		
31	116	polypeptide receptor-1 (VPAC1) ³ (NM_004624) F: 5'-
31 32 33	116 117	polypeptide receptor-1 (VPAC1) ³ (NM_004624) F: 5'- CTTCTGGTCGCCACAGCTATCCTG -3' and R: 5'-
31 32 33 34 35		
31 32 33 34 35 36 37	117	CTTCTGGTCGCCACAGCTATCCTG -3' and R: 5'-
31 32 33 34 35 36	117 118	CTTCTGGTCGCCACAGCTATCCTG -3' and R: 5'- ACTGCTGTCACTCITCCTGATATC-3'), Epidermal Growth Factor Receptor, Epidermal
31 32 33 34 35 36 37 38 39	117 118 119	CTTCTGGTCGCCACAGCTATCCTG -3' and R: 5'- ACTGCTGTCACTCITCCTGATATC-3'), Epidermal Growth Factor Receptor, Epidermal Growth Factor Receptor (EGFR) (NM_005228.3) F: 5'-TTCCTCCCAGTGCCTGAA -3'
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 	 117 118 119 120 	CTTCTGGTCGCCACAGCTATCCTG -3' and R: 5'- ACTGCTGTCACTCITCCTGATATC-3'), Epidermal Growth Factor Receptor, Epidermal Growth Factor Receptor (EGFR) (NM_005228.3) F: 5'-TTCCTCCCAGTGCCTGAA -3' and R: 5'- GGGTTCAGAGGCTGATTGTG -3') and Glycerinadehyde-3-Phosphate-
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 	 117 118 119 120 121 	CTTCTGGTCGCCACAGCTATCCTG -3' and R: 5'- ACTGCTGTCACTCITCCTGATATC-3'), Epidermal Growth Factor Receptor, Epidermal Growth Factor Receptor (EGFR) (NM_005228.3) F: 5'-TTCCTCCCAGTGCCTGAA -3' and R: 5'- GGGTTCAGAGGCTGATTGTG -3') and Glycerinadehyde-3-Phosphate- Dehydrogenase, GAPDH (NM_002046) F: 5'- GATGACATCAAGAAGGTGGTG-3' and R:
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 	 117 118 119 120 121 122 	CTTCTGGTCGCCACAGCTATCCTG -3' and R: 5'- ACTGCTGTCACTCITCCTGATATC-3'), Epidermal Growth Factor Receptor, Epidermal Growth Factor Receptor (EGFR) (NM_005228.3) F: 5'-TTCCTCCCAGTGCCTGAA -3' and R: 5'- GGGTTCAGAGGCTGATTGTG -3') and Glycerinadehyde-3-Phosphate- Dehydrogenase, GAPDH (NM_002046) F: 5'- GATGACATCAAGAAGGTGGTG-3' and R: 5'- GCTGTAGCCAAATTCGTTGTC-3'). Level of VPAC1 and EGFR mRNA expression
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 	 117 118 119 120 121 122 123 	CTTCTGGTCGCCACAGCTATCCTG -3' and R: 5'- ACTGCTGTCACTCITCCTGATATC-3'), Epidermal Growth Factor Receptor, Epidermal Growth Factor Receptor (EGFR) (NM_005228.3) F: 5'-TTCCTCCCAGTGCCTGAA -3' and R: 5'- GGGTTCAGAGGCTGATTGTG -3') and Glycerinadehyde-3-Phosphate- Dehydrogenase, GAPDH (NM_002046) F: 5'- GATGACATCAAGAAGGTGGTG-3' and R: 5'- GCTGTAGCCAAATTCGTTGTC-3'). Level of VPAC1 and EGFR mRNA expression was assessed using GoTaq® Hot Start Polymerase (Promega UK Ltd, Southampton, UK)
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 	 117 118 119 120 121 122 123 124 	CTTCTGGTCGCCACAGCTATCCTG -3' and R: 5'- ACTGCTGTCACTCITCCTGATATC-3'), Epidermal Growth Factor Receptor, Epidermal Growth Factor Receptor (EGFR) (NM_005228.3) F: 5'-TTCCTCCCAGTGCCTGAA -3' and R: 5'- GGGTTCAGAGGCTGATTGTG -3') and Glycerinadehyde-3-Phosphate- Dehydrogenase, GAPDH (NM_002046) F: 5'- GATGACATCAAGAAGGTGGTG-3' and R: 5'- GCTGTAGCCAAATTCGTTGTC-3'). Level of VPAC1 and EGFR mRNA expression was assessed using GoTaq® Hot Start Polymerase (Promega UK Ltd, Southampton, UK) according to manufacturer instructions. PCR conditions were 2 minutes at 95°C, and
 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 	 117 118 119 120 121 122 123 124 125 	CTTCTGGTCGCCACAGCTATCCTG -3' and R: 5'- ACTGCTGTCACTCITCCTGATATC-3'), Epidermal Growth Factor Receptor, Epidermal Growth Factor Receptor (EGFR) (NM_005228.3) F: 5'-TTCCTCCCAGTGCCTGAA -3' and R: 5'- GGGTTCAGAGGCTGATTGTG -3') and Glycerinadehyde-3-Phosphate- Dehydrogenase, GAPDH (NM_002046) F: 5'- GATGACATCAAGAAGGTGGTG-3' and R: 5'- GCTGTAGCCAAATTCGTTGTC-3'). Level of VPAC1 and EGFR mRNA expression was assessed using GoTaq® Hot Start Polymerase (Promega UK Ltd, Southampton, UK) according to manufacturer instructions. PCR conditions were 2 minutes at 95°C, and followed by 35 PCR cycles of 60 seconds at 95°C, 60 seconds at 60°C and 60 seconds at

reaction volume was 10µl of 2x qPCR SYBR green Mastermix buffer (Primer Design), primer pairs and cDNA template were mixed and PCR products were detected in an A&B 7900HT Fast Real-Time PCR System thermocycler (Applied Biosystems, CA, USA). PCR conditions were 10 min at 95°C, and followed by 40 PCR cycles of 15 seconds at 95°C and 60 seconds at 60°C. All assays were performed in triplicates. The melting curve was generated with a stepped temperature transition from 60 to 95°C with a rise of 1°C/5 sec for each step. The Ct values were normalized to the GAPDH housekeeping gene⁴ and calibrated to untreated cells. The relative quantification (RQ), expressed as fold change, was calculated according to the $\Delta\Delta$ Ct method.

138Detection of Phospho-p44/42 MAPK (Erk1/2) and VPAC1 in hepatocytes:

Gel electrophoresis:

Hepatocytes were serum starved for 24 hour following 12 to 16 hours of attachment. Then incubated with EGF (20 ng ml⁻¹) or VIP (10⁻⁶ M). To block B-RAF protein or cAMP cells were incubated with SB-590885 or Rp-Adenosine 3', 5'-cyclic monophosphorothioate triethylammonium salt (Rp-cAMPS) inhibitors. Cells were lysed using 1x TruPAGE[™] LDS Sample Buffer [with 2mM Sodium orthovanadate (Na₂VO₃), 20mM Sodium Pyrophosphate (Na₄P₂O₇), 1mM ethylenediaminetetraacetate (EDTA), 1mM EGTA and 0.5µg ml⁻¹ Leupeptin] and run a TruPAGE® 10% precast gels (Sigma) under reducing conditions. Total protein concentrations were measured using bicinchoninic acid (BCA) colorimetric protein assay kit (Sigma) in accordance with the manufacturer's instructions using a BSA standard.

149 Western blotting:

Proteins were transferred to nitrocellulose membranes by a wet transfer method. Membranes
were blocked for 1 hour in 5% non-fat blotting grade cow's milk (Bio-Rad) in 0.05 % Trisbuffered saline (TBS)–Tween® 20 solution. The membranes were then probed with 1:1000

Cell Proliferation

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 37
37 38
38 39
39 40
40 41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

60

153	rabbit anti-human Phospho-p44/42 MAPK (Erk1/2) (Thr202/Tyr204) antibody (New England
154	Biolabs, Hertfordshire, UK) or 1:000 rabbit anti-human p44/42 MAPK (Erk1/2) antibody
155	(New England Biolabs) overnight at 4°C, followed by goat anti-rabbit-horseradish peroxidase
156	(HRP) (DakoCytomation, Cambridgeshire, UK) at a dilution of 1:2000 for 45 minutes.
157	Reactive bands were visualised using the Luminata Forte Western HRP substrate
158	chemiluminescent substrate (Millipore UK Ltd., Hertfordshire, UK) in a ChemiDoc™
159	imaging system (Bio-Rad). In another experiment, level of VPAC1 protein expression in
160	untreated or VIP (10-6 M) treated hepatocytes, was investigated using a rabbit polyclonal anti
161	VPAC1 (Abcam) and followed by goat anti-rabbit-horseradish peroxidase (HRP)
162	(DakoCytomation) as before.
163	
164	
101	cAMP Direct Immunoassay:
165	Levels of cAMP in hepatocytes at 24 h following cell seeding (day 0) and at day 3 or 5
165	Levels of cAMP in hepatocytes at 24 h following cell seeding (day 0) and at day 3 or 5
165 166	Levels of cAMP in hepatocytes at 24 h following cell seeding (day 0) and at day 3 or 5 following stimulation with 10 ⁻⁶ M VIP were detected using a cAMP direct immunoassay
165 166 167	Levels of cAMP in hepatocytes at 24 h following cell seeding (day 0) and at day 3 or 5 following stimulation with 10 ⁻⁶ M VIP were detected using a cAMP direct immunoassay (Abcam) according to the manufacturer's instructions. Absorbance reading were determined
165 166 167 168	Levels of cAMP in hepatocytes at 24 h following cell seeding (day 0) and at day 3 or 5 following stimulation with 10^{-6} M VIP were detected using a cAMP direct immunoassay (Abcam) according to the manufacturer's instructions. Absorbance reading were determined at 450 nm and cAMP concentrations (μ M) were calculated by plotting values against cAMP
165 166 167 168 169	Levels of cAMP in hepatocytes at 24 h following cell seeding (day 0) and at day 3 or 5 following stimulation with 10^{-6} M VIP were detected using a cAMP direct immunoassay (Abcam) according to the manufacturer's instructions. Absorbance reading were determined at 450 nm and cAMP concentrations (μ M) were calculated by plotting values against cAMP standard (0-0.25 μ M) following background subtraction. cAMP concentrations (μ M) were

173 Albumin concentrations in the supernatant of hepatocytes cultures was determined using the 174 ELISA DuoSET[®] kit for human albumin (R&D Systems, Oxfordshire, UK) according to 175 manufacturer's instructions. Absorbance values were detected at 450nm with subtraction of 176 readings at 570nm to compensate for optical interference on a microplate Reader. The 177 detection range was from 2.5 to 160ng ml⁻¹.

178 Urea concentration assay:

The QuantiChromTM urea assay kit (QuantiChrom, BioAssay Systems, Hayward, CA) was used according to the manufacturer's instructions. Following 20 minutes incubation at room temperature, Absorbance at 430nm was measured and concentration of urea of the sample against 5mg dl⁻¹ standard was calculated in mg dl⁻¹.

to perior only

Cell Proliferation

3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
20
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
40 47
48
49
50
51
52
53
54
55
56
57
58

59

60

183 **References:**

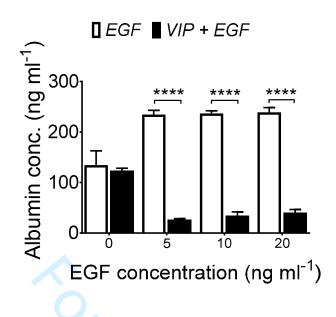
- 184 1. Gomez-Lechon MJ, Lopez P, Donato T, et al. Culture of human hepatocytes from small
- 185 surgical liver biopsies. Biochemical characterization and comparison with in vivo. In Vitro
- 186 *Cell Dev Biol* 1990;26(1):67-74.
- 187 2. Assay Design Center, ProbeFinder version 2.50 for Human.
- 188 https://lifescience.roche.com/en_gb/brands/universal-probe-library.html Accessed July, 2015.
 - 189 3. Park SK, Olson TA, Ercal N, et al. Characterization of vasoactive intestinal peptide
- 190 receptors on human megakaryocytes and platelets. *Blood* 1996;87(11):4629-35.
 - 191 4. Guo L, Dial S, Shi L, et al. Similarities and differences in the expression of drug-
- 192 metabolizing enzymes between human hepatic cell lines and primary human hepatocytes.
 - 193 Drug Metab Dispos 2011;39(3):528-38.

Vasoactive intestinal peptide (VIP) induces proliferation of human hepatocytes

Mogibelrahman M.S. Khedr^{1,2}, Ahmed M. Abdelmotelb^{1,3}, Thomas A. Bedwell¹, Anan Shtaya⁴, Mohammad N. Alzoubi ^{5,6}, Mohammed Abu Hilal^{1,6}, and Salim I. Khakoo^{1,6}.

¹Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom. ²Faculty of Medicine, Suez Canal University, Ismailia, Egypt. ³Faculty of Medicine, Tanta University, Tanta, Egypt. ⁴St George's University of London, London, United Kingdom. ⁵University of Jordan, Amman, Jordan. ⁶Southampton University Hospitals NHS Trust, Southampton, United Kingdom.

Table of contents	
Supplementary Figure 1	


Supplementary Figure 1 The effect of VIP on VPAC1 mRNA gene expression in hepatocytes. n = 3 for each condition. P values shown in the graph are for overall comparison with hepatocytes at day 1 of treatment. * P<0.05. Mean ± SEM. Two-way ANOVA followed by Fisher's least significant difference (LSD).

Vasoactive intestinal peptide (VIP) induces proliferation of human hepatocytes

Mogibelrahman M.S. Khedr^{1,2}, Ahmed M. Abdelmotelb^{1,3}, Thomas A. Bedwell¹, Anan Shtaya⁴, Mohammad N. Alzoubi ^{5,6}, Mohammed Abu Hilal^{1,6}, and Salim I. Khakoo^{1,6}.

¹Clinical and Experimental Sciences Academic Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom. ²Faculty of Medicine, Suez Canal University, Ismailia, Egypt. ³Faculty of Medicine, Tanta University, Tanta, Egypt. ⁴St George's University of London, London, United Kingdom. ⁵University of Jordan, Amman, Jordan. ⁶Southampton University Hospitals NHS Trust, Southampton, United Kingdom.

Table of contents	
Supplementary Figure 2	 1

Supplementary Figure 2 Albumin production from human hepatocytes cultured with EGF and VIP. Hepatocytes were cultured in William's E maintenance medium and EGF (5, 10 or 20 ng ml⁻¹) and VIP (10⁻⁶ M) was added one day later. n = 3 for each condition. *P* values shown in the graph are for comparison at individual concentrations. * P<0.05, ** P<0.005, **** P<0.0001. Mean ± SEM. Two-way ANOVA followed by Fisher's least significant difference (LSD).