Human Mutation

Mutational Spectrum in a Worldwide Study of 29,700 Families with BRCA1 or BRCA2 Mutations

Journal:	Human Mutation
Manuscript ID	humu-2017-0465
Wiley - Manuscript type:	Research Article
Date Submitted by the Author:	30-Oct-2017
Complete List of Authors:	Rebbeck, Timothy; Dana Farber Cancer Institute, Friebel, Tara; Dana Farber Cancer Institute Friedman, Eitan; Chaim Sheba Medical Center, The Suzanne Levy Gertner Oncogenetics Unit Hamann, Ute; <none>, Huo, Dezheng; Univeristy of Chicago Kwong, Ava; Stanford University School of Medicine, Department of Surgery; The University of Hong Kong Li Ka Shing School of Medicine, Division of Breast Surgery, Department of Surgery Olah, Edith; National Institute of Oncology, Molecular Genetics Olopade, Olufunmilayo; <none> Solano, Angela; Centro de Estudios Médicos e Investigaciones Clínicas, Laboratorio de Genotipificación y Cáncer Hereditario. Departamento de Análisis Clínicos Teo, Soo-Hwang; Subang Jaya Medical Centre Thomassen, Mads; Odense University Hospital, Department of Clinical Genetics Weitzel, Jeffrey; City of Hope National Medical Center, Clinical Cancer Genetics Chan, TL; Hong Kong Sanatorium and Hospital, Department of Pathology Couch, Fergus; Mayo Clinic, Department of Laboratory Medicine and Pathology and Department of Health Sciences Research; Goldgar, David; University of Utah School of Medicine, Room 4B454, Department of Dermatology; Kruse, Torben; Odense Universitetshospital, Department of Clinical Genetics Palmero, Edenir; Barretos Cancer Hospital, Molecular Oncology Research Center Park, Sue K.; Seoul National University College of Medicine, Department of preventive medicine Torres, Diana; Deutsches Krebsforschungszentrum, Molcular Genetics of Breast Cancer van Rensburg, Elizabeth; University of Pretoria, Genetics McGuffog, Lesley ; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge Parsons, Michael; Queensland Institute of Medical Research, Cancer Biology Leslie, Goska; University of Cambridge Department of Public Health and Primary Care, Center for Cancer Genetic Epidemiology

```
Aalfs, Cora M.; <none>,
Abugattas, Julio; City of Hope National Medical Center
Adlard, Julian; Chapel Allerton Hospital, Yorkshire Regional Genetics
Service
Agata, Simona; Veneto Institute of Oncology, Immunology and Molecular
Oncology Unit
Aittomäki, Kristiina; Department of Clinical Genetics, Helsinki University
Hospital, University of Helsinki
Andrews, Lesley; Prince of Wales Hospital and Community Health Services,
Hereditary Cancer Clinic
Andrulis, Irene; Lunenfeld-Tanenbaum Research Institute
Arason, Adalgeir; Landspitali University Hospital
Arnold, Norbert; <none>,
Arun, Banu; Howard Hughes Medical Institute - University of Texas MD
Anderson Cancer Center, Department of Breast Medical Oncology and
Clinical Cancer Genetics Program
Asseryanis, Ella; Medical University of Vienna , Department of OB/GYN and
Comprehensive Cancer Center
Auerbach, Leo; Medical University of Vienna , Department of OB/GYN and
Comprehensive Cancer Center
Azzollini, Jacopo; Fondazione IRCCS (Istituto Di Ricovero e Cura a
Carattere Scientifico ) Istituto Nazionale Tumori (INT), Department of
Preventive and Predictive Medicine
Balmaña, Judith; University Hospital Vall Hebron, Medical Oncology
Department
Barile, Monica; Istituto Europeo di Oncologia, Division of Cancer Prevention
and Genetics
Barkardotti, Rosa; Landspitali University Hospital
Barrowdale, Daniel; University of Cambridge Strangeways Research
Laboratory, Department of Public Health and Primary Care
Benitez, Javier; Centro Nacional de Investigaciones Oncologicas, Human
Genetics Group
berger, andreas; Medical University of Vienna, Department of OB/GYN
Berger, Raanan; Sheba Cancer Center and Institute of Oncology
Blanco, Amie; UCSF Cancer Genetics and Prevention Program
Blazer, Kathleen; City of Hope, Clinical Cancer Genetics
Blok, Marinus; Maastricht University Medical Center (MUMC+), Clinical
Genetics; Maastricht University Medical Center (MUMC+), School for
Oncology & Developmental Biology (GROW)
Bonadona, Valerie; Centre Leon Berard, Unité de Prévention et
d'Epidémiologie Génétiqu
Bonanni, Bernardo; Istituto Europeo di Oncologia,
Bradbury, Angela; University of Pennsylvania Perelman School of Medicine
Brewer, Carole; Royal Devon and Exeter Hospital, Department of Clinical
Genetics
Buecher, Bruno; Institut Curie - Site Paris, Service de génétique
Buys, Sandra; Huntsman Cancer Institute, Department of Medicine
Caldes, Trinidad; Hospital Clinico San Carlos. IdISCC,
Caliebe, Almuth; Christian-Albrechts University Kiel, Institute of Human
Genetics
Caligo, Adelaide Maria; Università di Pisa, Dipartimento di Medicina di
Laboratorio
Campbell, Ian; Peter MacCallum Cancer Centre, Research Division
CAPUTO, Sandrine; Institut Curie - Site Paris, Service de génétique
Chiquette, Jocelyne; Hopital du Saint-Sacrement
Chung, Wendy; Columbia University, pediatrics
Claes, Kathleen; Ghent University Hospital, Center for Medical Genetics
Collee, J; Erasmus University Medical Center, Department of Clinical
Genetics
Cook, Jackie; Sheffield Children's Hospital
Davidson, Rosemarie; Queen Elizabeth University Hospital
```

de la Hoya, Miguel; Hospital Clínico San Carlos, Laboratorio de Oncología Molecular;
De Leeneer, Kim; Ghent University Hospital, Center fro Medical Genetics de Pauw, Antoine; Insitut Curie, Service de Genetique Delnatte, Capucine; ICO-Centre Rene Gauducheau Diez, Orland; Vall d'Hebron University Hospital, Oncogenetics Group Ding, Yuan; Beckman Research Institute
Ditsch, Nina; Ludwig Maximilians Universität, Department for Obstetrics and Gynaecology
Domchek, Susan; University of Pennsylvania Perelman School of Medicine, Department of Medicine
Dorfling, Cecilia; University of Pretoria, Cancer Genetics Laboratory durán, mercedes; IBGM, ;
Dworniczak, Bernd; University of Munster
Eason, Jacqueline; Nottingham Univeristy Hospitals NHS Trust
Easton, Douglas; University of Cambridge, CR-UK Genetic Epidemiology Unit;
Eeles, Ros; Royal Marsden NHS Foundation Trust, The Institute of Cancer Research
Ehrencrona, Hans; Lund University, Department of Clinical Genetics Ejlertsen, Bent; Copenhagen University Hospital, Department of Oncology EMBRACE, Study; Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge
Engel, Christoph; University of Leipzig, Institute for Medical Informatics Engert, Stefanie; Technical University Munich, Department of Gynaecology and Obstetrics, Division of Tumor Genetics
Evans, Gareth ; The University of Manchester, Genetic Medicine
Faivre, Laurence; Dijon Hospital, medical Genetics;
Feliubadaló, Lídia; Catalan Institute of Oncology (ICO-IDIBELL), Hereditary Cancer Program, Genetic Diagnosis Unit
Fert Ferrer, Sandra; Hotel Dieu Centre Hospitalier, Laboratoire de Genetique Chromosomique
Foretova, Lenka; <none>,
Fowler, Jeffrey; Ohio State University, Columbus Cancer Council
Frost, Debra; University of Cambridge Strangeways Research Laboratory, Department of Public Health and Primary Care
Galvao, Henrique; Hospital de Cancer de Barretos
Ganz, Patricia; University of California Los Angeles Jonsson Comprehensive Cancer Center
Garber, Judy E; Dana-Farber Cancer Institute, Boston
Gauthier-Villars, Marion; Institut Curie
Gehrig, Andrea; Institute of Human Genetics Univeristy Wurzburg, Department of Medical Genetics
Stoppa-Lyonnet, Dominique; Institut Curie, Département de Biopathologie Gerdes, Anne-Marie; Rigshospitalet, Department of Clinical Genetics Gesta, Paul; CHR Georges Renon, Service d'oncologie
Giannini, Giuseppe; University La Sapienza, Dept. Experimental medicine and Pathology
Giraud, Sophie ; Centre Leon Berard
Glendon, Gord; Lunenfeld-Tanenbaum Research Institute Godwin, Andrew; Fox Chase Cancer Center, ; University of Kansas Medical Center, Department of Pathology and Laboratory Medicine
Greene, Mark; US National Cancer Institute, DCEG, Clinical Genetics Branch
Gronwald, Jacek; Pomeranian Medical University, Department of Genetics and Pathology
Gutierrez-Barrera, Angelica; University of Texas MD Anderson Cancer Center
Hahnen, Eric; University Hospital Cologne, Center for Hereditary Breast and Ovarian Cancer and Center for Integrated Oncology 35 (CIO), Medical Faculty

Hauke, Jan; Center for Hereditary Breast and Ovarian Cancer, University Hospital of Cologne
Study, HEBON; Nederlands Kanker Instituut - Antoni van Leeuwenhoek Ziekenhuis
Henderson, Alex; International Centre for Life, Institute of Genetic Medicine
Hentschel, Julia; University of Leipzig, Institute of Human Genetics Hogervorst, Frans; the Netherlands Cancer Institute, DNA diagnostic laboratory of the Family Cancer Clinic;
Honisch, Ellen; Universitatsklinikum Dusseldorf, Department of Gynaecology and Obstetrics
Imyanitov, Evgeny; N.N. Petrov Institute of Oncology, Molecular Diagnostics
Isaacs, Claudine; Georgetown Lombardi Comprehensive Cancer Center Izatt, Louise; Guy's and St Thomas' NHS Foundation Trust, Clinical Genetics Department
Izquierdo, Angel; Institut Catala d' Oncologia, Genetic Counseling Unit, Hereditary Cancer Program, IDIBGI (Institut d'Investigació Biomèdica de Girona)
Jakubowska, Anna; Pomeranian Medical University, Department of Genetics and Pathology
James, Paul; Peter MacCallum Cancer Centre, Familial Cancer Centre Janavičius, Ramūnas; Vilnius University Hospital Santariskiu Clinics,
Hematology, oncology and transfusion medicine center;
Birk Jensen, Uffe; Arhus Universitetshospital, Klinisk Genetisk Afdeling John, Esther; Cancer Prevention Institute of California, ; Stanford University School of Medicine,
Joseph, Vijai; Memorial Sloan-Kettering Cancer Center, Medicine; Kaczmarek, Katarzyna; Pomeranian Medical University, Department of Genetics and Pathology
Karlan, Beth; Cedars-Sinai Medical Center Samuel Oschin Comprehensive Cancer Institute
Kast, Karin; University of Dresden, Obstetrics and Gynaecology Investigators, kConFab; Peter MacCallum Cancer Centre,
Kim, Sung-Won; Seoul National University Bundang Hospital, Department of Surgery
Konstantopoulou, Irene; National Centre for Scientific ResearchDemokritos, Molecular Diagnostics Laboratory, INRASTES (Institute of Nuclear and Radiological Sciences and Technology)
Korach, Jacob; Chaim Sheba Medical Center, The Gyneco-Oncology Department
Laitman, Yael; Chaim Sheba Medical Center, The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics
Lasa, Adriana; Hospital de la Santa Creu i Sant Pau.,
Lasset, Christine; Center Leon Berard, Unité de Prévention et d'Epidémiologie Génétique
Lázaro, Conxi; Catalan Institute of Oncology (ICO), Translational Research Laboratory;
Lee, Annette; The Feinstein Institute for Medical Research
Lee, Min Hyuk; Soonchunhynag University Hospital, Department of Surgery
Lester, Jenny; Cedars-Sinai Medical Center Samuel Oschin Comprehensive
Cancer Institute
Lesueur, Fabienne; INSERM, U900, Mines ParisTech, Institut Curie
Liljegren, Annelie; Karolinska Universitetssjukhuset, Department of Oncology
Lindor, Noralane; Mayo Clinic, Department of Health Sciences Research Longy, Michel; Institut Bergonie, Molecular Genetics Laboratory
Loud, Jennifer; NCI, NIH, Clinical Genetics Branch, DCEG
Lu, Karen ; University of Texas MD Anderson Cancer Center, Department of Gynecological Oncology and Clinical Cancer Genetics Program Lubinski, Jan; Pomeranian Medical University, Department of Genetics and

Pathology

Machackova, Eva; cancer institute, cancer epidemiology and genetics Manoukian, Siranoush; Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), Department of Preventive and Predictive Medicine
Mari, Veronique; Centre Antoine-Lacassagne
Martinez-Bouzas, Cristina; BioCruces Health Research Institute
Matrai, Zoltan; National Institute of Oncology , Department of Surgery
Mebirouk, Noura; Institut Curie, Mines Paris Tech, PSL University, Genetic Epidemiology of Cancer team
Meijers, Hanne; VU medical centre,
Meindl, Alfons; Technical University, Muenich, Department of Gynaecology and Obstetrics
Mensenkamp, Arjen; Radboud university medical center,
Mickys, Ugnius; National Center of Pathology,
Miller, Austin; Roswell Park Cancer Insititut, Statistics and Data
Management Center
Montagna, Marco; Veneto Institute of Oncology IOV - IRCCS
Moysich, Kirsten; Roswell Park Cancer Institute, Department of Cancer Prevention and Control
Mulligan, Anna Marie; University of Toronto, Department of Laboratory Medicine and Pathobiology
Musinsky, Jacob; Memorial Sloan-Kettering Cancer Center , Clinical Genetics Research Laboratory
Neuhausen, Susan; Beckman Research Institute of the City of Hope, Department of Population Sciences
Nevanlinna, Heli; <none>,
Ngeow, Joanne; National Cancer Centre Signapore, Cancer Genetics Service
Nguyen, Huu; University of Teubingen, Institute of Medical Genetics and Applied Genomics
Niederacher, Dieter; Universitatsklinikum Dusseldorf, Department of Gynaecology and Obstetrics
Nielsen, Henriette; Odense Universitetshospital, Department of Human Genetics
Nielsen, Finn; Rigshospitalet, Center for Genomic Medicine
Nussbaum, Robert; UCSF
Offit, Kenneth; <none>
Ofverholm, Anna; Sahlgrenska universitetssjukhuset, Department of Clinical Genetics
Ong, Kai-ren; Birmingham Women's Hospital Healthcare NHS Trust, West Midlands Regional Genetics Service
Osorio, Ana; Centro National Investigaciones Oncologicas,
Papi, Laura; University of Florence, Department of Biomedical Experimental and Clinical Sciences
Papp, Janos; National Institute of Oncology, Molecular Genetics
Pasini, Barbara; University of Turin, Department of Genetics, Biology and Biochemistry
Pedersen, Inge; Aalborg Univeristy Hospital, Section of Moleular Diagnostics, Department of Biochemistry
Peixoto, Ana; Portuguese Oncology Institute, Department of Genetics
Peruga, Nina; Pomeranian Medical University , Department of Genetics and Pathology
Peterlongo, Paolo; Fondazione IRCCS Istituto Nazionale Tumori (INT),
Department of Preventive and Predictive Medicine, Unit of Molecular Bases of Genetic Risk and Genetic Testing; Fondazione Istituto FIRC di Oncologia Molecolare (IFOM)
Pohl, Esther ; University Hospital of Cologne, Centre of Familial Breast and Ovarian Cancer, Department of Gynaecology and Obstetrics and Centre for Integrated Oncology (CIO), Center for Molecular Medicine Cologne (CMMC) Pradhan, Nisha; Memorial Sloan-Kettering Cancer Center, Clinical Genetics

[^0]Thull, Darcy; Magee-Womens Hospital of UPMC, Department of Medicine Tischkowitz, Marc; McGill University, Departments of Human Genetics and Oncology; Jewish General Hospital, Segal Cancer Centre Tognazzo, Silvia; Veneto Institute of Oncology IOV-IRCCS, Immunology and Molecular Oncology Unit
Toland, Amanda; The Ohio State University, Department of Molecular Virology, Immunology and Medical Genetics, Division of Human Cancer Genetics; Department of Internal Medicine, Division of Human Genetics, OSU Comprehensive Cancer Center Topka, Sabine; Memorial Sloan-Kettering Cancer Center, Clinical Genetics Research Laboratory
Trainer, Alison; Parkville Familial Cancer Centre, Royal Melbourne Hospital Tung, Nadine; Beth Israel Deaconess Medical Center, Department of Medical Oncology
van Asperen, Christi; Leiden University Medical Center, Clinical Genetics van der Hout, Annemieke; University of Groningen, University Medical Center Groningen, Department of Genetics van der Kolk, Lizet; NKI,
van der Luijt, Rob; UMC Utrecht, Medical Genetics
Van Heetvelde, Mattias; Ghent University Hospital, Center for Medical Genetics
Varesco, Liliana; IRCCS AOU San Martino-IST, Unit of Hereditary Cancer Varon, Raymonda; Charité University Medical Center, Institute of Human Genetics;
Vega, Ana; Fundación Pública Galega Medicina Xenómica, Villarreal-Garza, Cynthia; Instituto Nacional de Cancerologia, Departamento de Investigacion y de Tumores Mamarios; Centro de Cancer de Mama del Hospital Zambrano Hellion, Tecnologico de Monterrey von Wachenfeldt, Anna; Karolinska Universitetssjukhuset, Department of Oncology
Walker, Lisa; Oxford Regional Genetics Service, Churchill Hospital Wang-Gohrke, Shan; University Hospital Ulm, Department of Gynaecology and Obstretics
Wappenschmidt, Barbara; University Hospital of Cologne, Department of Gynaecology and Obstetrics
Weber, Bernhard H.F.; Unversity of Regensburg, Institute of Human Genetics
Yannoukakos, Drakoulis; National Centre for Scientific Research
"Demokritos", Molecular Diagnostics Laboratory, (INRASTES) Institute of Nuclear and Radiological Sciences and Technology
Yoon, Sook-Yee; Subang Jaya Medical Centre, Cancer Research Initiatives Foundation
Zanzottera, Cristina; Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), Unit of Medical Genetics, Department of Preventive and Predictive Medicine Zidan, Jamal; Rivka Ziv Medical Center, Institute of Oncology Zorn, Kristin; Magee-Womens Hospital of UPMC
Selkirk, Christina; Northshore Univeristy Health System, Center for Medical Genetics
Hulick, Peter; NorthShore Research Institute, Northwestern University Chenevix-Trench, Georgia ; Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute
Spurdle, Amanda; Queensland Institute of Medical Research, Cancer Biology
Antoniou, Antonis; University of Cambridge, Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care Nathanson, Katherine; University of Pennsylvania Perelman School of Medicine, Department of Medicine, Abramson Cancer Center

Key Words:

BRCA1, BRCA2, breast cancer, ovarian cancer, mutation, ethnicity, geography

Mutational Spectrum in a Worldwide Study of

29,700 Families with BRCA1 or BRCA2 Mutations

Timothy R. Rebbeck PhD ${ }^{1}$, Tara M. Friebel MPH ${ }^{1}$, Eitan Friedman MD, PhD^{2}, Ute Hamann PhD^{3}, Dezheng Huo ${ }^{4}$, Ava Kwong ${ }^{5}$, Edith Olah PhD DSc ${ }^{6}$, Olufunmilayo I. Olopade ${ }^{4}$, Angela R. Solano PhD ${ }^{7}$, Soo-Hwang Teo ${ }^{8}$, Mads Thomassen ${ }^{9}$, Jeffrey N. Weitzel MD ${ }^{10}$, TL Chan MBBS ${ }^{11}$, PhD, FRCS, Fergus J. Couch PhD ${ }^{12}$, David E. Goldgar PhD ${ }^{13}$, Torben A. Kruse PhD^{9}, Edenir Inêz Palmero PhD ${ }^{14}$, Sue Kyung Park MD, PhD ${ }^{15}$, Diana Torres PhD ${ }^{3,16}$, Elizabeth J. van Rensburg PhD ${ }^{17}$, Lesley McGuffog ${ }^{18}$, Michael T. Parsons ${ }^{19}$, Goska Leslie MEng ${ }^{18}$, Cora M. Aalfs MD, PhD ${ }^{20}$, Julio Abugattas MD ${ }^{21}$, Julian Adlard ${ }^{22}$, Simona Agata PhD^{23}, Kristiina Aittomäki MD, PhD ${ }^{24}$, Lesley Andrews MBBS (Hons), MD, FRCAP, ANZGOG ${ }^{25}$, Irene L. Andrulis ${ }^{26}$, Adalgeir Arason BSc^{27}, Norbert Arnold PhD ${ }^{28}$, Banu K. Arun M^{29}, Ella Asseryanis $M D^{30}$, Leo Auerbach $M D^{30}$, Jacopo Azzollini ${ }^{31}$, Judith Balmaña MD, PhD ${ }^{32}$, Monica Barile ${ }^{33}$, Rosa B. Barkardottir CandSci ${ }^{34}$, Daniel Barrowdale BSc 18, Javier Benitez PhD ${ }^{35}$, Andreas Berger MD ${ }^{36}$, Raanan Berger MD, PhD ${ }^{37}$, Amie M. Blanco MS ${ }^{38}$, Kathleen R. Blazer EdD ${ }^{10}$, MS, Marinus J. Blok ${ }^{39}$, Valérie Bonadona ${ }^{40}$, Bernardo Bonanni ${ }^{33}$, Angela R. Bradbury ${ }^{41}$, Carole Brewer ${ }^{42}$, Bruno Buecher MD ${ }^{43}$, Saundra S. Buys MD ${ }^{44}$, Trinidad Caldes MD, PhD ${ }^{45}$, Almuth Caliebe M^{46}, Maria A. Caligo ${ }^{47}$, Ian Campbell PhD^{48}, Sandrine Caputo PhD ${ }^{43}$, Jocelyne Chiquette MD ${ }^{49}$, Wendy K. Chung ${ }^{50}$, Kathleen B.M. Claes ${ }^{51}$, J. Margriet Collée MD ${ }^{52}$, Jackie Cook ${ }^{53}$, Rosemarie Davidson ${ }^{54}$, Miguel de la Hoya PhD^{45}, Kim De Leeneer MD, PhD ${ }^{51}$, Antoine de Pauw ${ }^{43}$, Capucine Delnatte MD^{55}, Orland Diez PhD^{56}, Yuan Chun Ding PhD^{57}, Nina Ditsch MD ${ }^{58}$, Susan M. Domchek ${ }^{41}$, Cecilia M. Dorfling MSc ${ }^{17}$, Mercedes Duran PhD ${ }^{59}$, Bernd Dworniczak MD ${ }^{60}$, Jacqueline Eason ${ }^{61}$, Douglas F. Easton PhD ${ }^{18}$, Ros Eeles ${ }^{62}$, Hans Ehrencrona ${ }^{63}$, Bent Ejlertsen MD ${ }^{64}$, EMBRACE ${ }^{18}$, Christoph Engel MD^{65}, Stefanie Engert PhD^{66}, D. Gareth Evans ${ }^{67}$, Laurence Faivre ${ }^{68}$, Lidia Feliubadaló ${ }^{69}$, Sandra Fert Ferrer MD ${ }^{70}$, Lenka Foretova ${ }^{71}$, Jeffrey Fowler ${ }^{72}$, Debra Frost ${ }^{18}$, Henrique C. R. Galvão MD^{73}, Patricia A. Ganz ${ }^{74}$, Judy Garber MD MPH ${ }^{75}$, Marion Gauthier-Villars ${ }^{43}$, Andrea Gehrig ${ }^{76}$, GEMO Study Collaborators ${ }^{77}$, Anne-Marie Gerdes MD ${ }^{78}$, Paul Gesta MD ${ }^{79}$, Giuseppe Giannini ${ }^{80}$, Sophie Giraud ${ }^{81}$, Gord Glendon MSc ${ }^{82}$, Andrew K. Godwin ${ }^{83}$, Mark H. Greene MD ${ }^{84}$, Jacek Gronwald MD, PhD ${ }^{85}$, Angelica Gutierrez-Barrera MS ${ }^{29}$, Eric Hahnen PhD ${ }^{86}$, Jan Hauke ${ }^{86}$, HEBON ${ }^{87}$, Alex Henderson ${ }^{88}$, Julia Hentschel PhD ${ }^{89}$, Frans B.L. Hogervorst ${ }^{90}$, Ellen Honisch PhD ${ }^{91}$, Evgeny N. Imyanitov ${ }^{92}$, Claudine Isaacs ${ }^{93}$, Louise Izatt ${ }^{94}$, Angel Izquierdo ${ }^{95}$, Anna Jakubowska PhD ${ }^{85}$, Paul James MBBS, PhD, FRACP, FRANZCR ${ }^{96}$, Ramunas Janavicius MD, PhD ${ }^{97}$, Uffe Birk Jensen ${ }^{98}$, Esther M. John PhD ${ }^{99}$, Vijai Joseph PhD ${ }^{100}$, Katarzyna Kaczmarek MSc ${ }^{85}$, Beth Y. Karlan MD ${ }^{101}$, Karin Kast ${ }^{102}$, KConFab Investigators ${ }^{103}$, Sung-Won Kim MD, PhD ${ }^{104}$, Irene Konstantopoulou PhD ${ }^{105}$, Jacob Korach MD ${ }^{106}$, Yael Laitman MSc ${ }^{2}$, Adriana Lasa PhD ${ }^{107}$, Christine Lasset ${ }^{40}$, Conxi Lázaro ${ }^{69}$, Annette Lee ${ }^{108}$, Min Hyuk Lee MD, PhD^{109}, Jenny Lester MPH ${ }^{101}$, Fabienne Lesueur PhD ${ }^{110}$, Annelie Liljegren ${ }^{111}$, Noralane M. Lindor ${ }^{112}$, Michel Longy ${ }^{113}$, Jennifer T. Loud DNP, CRNP ${ }^{114}$, Karen H. Lu ${ }^{115}$, Jan Lubinski MD, PhD ${ }^{85}$, Eva Machackova ${ }^{71}$, Siranoush Manoukian ${ }^{31}$, Véronique Mari ${ }^{116}$, Cristina Martínez-Bouzas PhD ${ }^{117}$, Zoltan Matrai MD, PhD ${ }^{118}$, Noura Mebirouk ${ }^{110}$, Hanne E.J. Meijers-Heijboer PhD ${ }^{119}$, Alfons Meindl ${ }^{66}$, Arjen R. Mensenkamp ${ }^{120}$, Ugnius Mickys ${ }^{121}$, Austin Miller PhD ${ }^{122}$, Marco Montagna PhD ${ }^{23}$, Kirsten B. Moysich MS, PhD ${ }^{123}$, Anna Marie Mulligan ${ }^{124}$, Jacob Musinsky BA ${ }^{100}$, Susan L. Neuhausen PhD ${ }^{57}$, Heli Nevanlinna PhD ${ }^{125}$, Joanne Ngeow MBBS, MRCP, MPH ${ }^{126}$, Huu Phuc Nguyen MD ${ }^{127}$, Dieter Niederacher PhD^{91}, Henriette Roed Nielsen ${ }^{9}$, Finn Cilius Nielsen MD ${ }^{128}$, Robert L. Nussbaum MD ${ }^{129}$, Kenneth Offit MD, MPH ${ }^{130}$, Anna Öfverholm MD ${ }^{131}$, Kai-ren Ong ${ }^{132}$, Ana Osorio PhD ${ }^{133}$, Laura Papi ${ }^{134}$, Janos Papp PhD ${ }^{6}$, Barbara Pasini ${ }^{135}$, Inge Sokilde Pedersen PhD ${ }^{136}$, Ana Peixoto MSc ${ }^{137}$, Nina Peruga MSc^{85}, Paolo Peterlongo ${ }^{138}$, Esther Pohl PhD ${ }^{86}$, Nisha Pradhan BA ${ }^{100}$, Karolina Prajzendanc MSc^{85}, Fabienne Prieur MD ${ }^{139}$, Pascal Pujol MD ${ }^{140}$, Paolo Radice ${ }^{141}$, Susan J. Ramus ${ }^{142,143}$, Johanna Rantala PhD ${ }^{144}$, Muhammad Usman Rashid MBBS ${ }^{3,145}$, PhD, Kerstin Rhiem ${ }^{86}$, Mark Robson MD ${ }^{146}$, Gustavo C. Rodriguez MD ${ }^{147}$, Mark T. Rogers ${ }^{148}$, Vilius Rudaitis ${ }^{149}$, Ane Y. Schmidt ${ }^{128}$, Rita Katharina

Schmutzler MD^{86}, Leigha Senter MS^{150}, Payal D. Shah MD ${ }^{41}$, Priyanka Sharma MD ${ }^{151}$, Lucy E. Side ${ }^{152}$, Jacques Simard PhD ${ }^{153}$, Christian F. Singer MD, MPH ${ }^{30}$, Anne-Bine Skytte MD, PhD ${ }^{98}$, Thomas P. Slavin MD ${ }^{10}$, Katie Snape ${ }^{154}$, Hagay Sobol ${ }^{155}$, Melissa Southey PhD ${ }^{155}$, Linda Steele ${ }^{57}$, Doris Steinemann PhD ${ }^{157}$, Grzegorz Sukiennicki ${ }^{85}$, Christian Sutter ${ }^{158}$, Csilla I. Szabo ${ }^{159}$, Yen Y. Tan PhD ${ }^{36}$, Manuel R. Teixeira PhD ${ }^{137}$, Mary Beth Terry PhD ${ }^{160}$, Alex Teulé MD ${ }^{161}$, Abigail Thomas MPH ${ }^{162}$, Darcy L. Thull MS ${ }^{163}$, Marc Tischkowitz MD, PhD ${ }^{164}$, Silvia Tognazzo MSc ${ }^{23}$, Amanda Ewart Toland PhD ${ }^{165}$, Sabine Topka PhD ${ }^{100}$, Alison H Trainer MBBS, PhD, FRACP ${ }^{166}$, Nadine Tung MD ${ }^{167}$, Christi J. van Asperen ${ }^{168}$, Annemieke H. van der Hout ${ }^{169}$, Lizet E. van der Kolk MD, PhD ${ }^{170}$, Rob B. van der Luijt PhD ${ }^{171}$, Mattias Van Heetvelde Msc ${ }^{51}$, Liliana Varesco ${ }^{172}$, Raymonda Varon-Mateeva ${ }^{173}$, Ana Vega ${ }^{174}$, Cynthia Villarreal-Garza, MD, PhD ${ }^{175}$, Anna von Wachenfeldt MD, PhD ${ }^{176}$, Lisa Walker ${ }^{177}$, Shan WangGohrke MD ${ }^{178}$, Barbara Wappenschmidt ${ }^{85}$, Bernhard H. F. Weber PhD ${ }^{179}$, Drakoulis Yannoukakos ${ }^{105}$, Sook-Yee Yoon ${ }^{8}$, Cristina Zanzottera ${ }^{31}$, Jamal Zidan MD ${ }^{180}$, Kristin K. Zorn MD ${ }^{181}$, Christina G. Hutten Selkirk ${ }^{182}$, Peter J. Hulick MD ${ }^{183}$, Georgia Chenevix-Trench PhD ${ }^{19}$, Amanda B. Spurdle ${ }^{19}$, Antonis C. Antoniou PhD ${ }^{18}$, Katherine L. Nathanson MD ${ }^{41}$ for the CIMBA Consortium
${ }^{1}$ Harvard TH Chan School of Public Health and Dana Farber Cancer Institute, 1101 Dana Building, 450 Brookline Ave, Boston, MA 02215, USA
${ }^{2}$ The Susanne Levy Gertner Oncogenetics Unit, Institute of Human Genetics, Chaim Sheba Medical Center, Ramat Gan 52621, and the Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
${ }^{3}$ Molecular Genetics of Breast Cancer, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
${ }^{4} 5841$ South Maryland Avenue, MC 2115 Chicago, IL, USA
${ }^{5}$ The Hong Kong Hereditary Breast Cancer Family Registry, Cancer Genetics Center, Hong Kong Sanatorium and Hospital, Hong Kong
${ }^{6}$ Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary
${ }^{7}$ INBIOMED, Faculty of Medicine, University of Buenos Aires/CONICET and CEMIC, Department of Clinical Chemistry, Medical Direction, Buenos Aires, Paraguay 2155, C1121ABG, Argentina
${ }^{8}$ Cancer Research Initiatives Foundation, Sime Darby Medical Centre, 1 Jalan SS12/1A, Subang Jaya, 47500, Malaysia
${ }^{9}$ Department of Clinical Genetics, Odense University Hospital, Sonder Boulevard 29, Odense C, Denmark
${ }^{10}$ Clinical Cancer Genetics, City of Hope, 1500 East Duarte Road, Duarte, California 91010 USA
${ }^{11}$ Division of Molecular Pathology, Department of Pathology, Hong Kong Sanatorium \& Hospital, 1/F Li Shu Fan Block, 2 Village Road, Happy Valley, Hong Kong
${ }^{12}$ Department of Laboratory Medicine and Pathology, and Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA
${ }^{13}$ Department of Dermatology, University of Utah School of Medicine, 30 North 1900 East, SOM 4B454, Salt Lake City, UT 84132, USA
${ }^{14}$ Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
$\left.{ }^{15} 1\right)$ Department of Preventive Medicine, Seoul National University College of Medicine; 2) Department of Biomedical Science, Seoul National University Graduate School; 3) Cancer Research Center, Seoul National University, 103 Daehak-ro, Jongno-gu, Seoul, Korea
${ }^{16}$ Institute of Human Genetics, Pontificia Universidad Javeriana, Carrera 7, Bogota, 11001000, Colombia
${ }^{17}$ Cancer Genetics Laboratory, Department of Genetics, University of Pretoria, Private Bag X323, Arcadia 0007, South Africa
${ }^{18}$ Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Strangeways Research Laboratory, Worts Causeway, Cambridge, UK
${ }^{19}$ Genetics and Computational Biology Department, QIMR Berghofer Medical Research Institute, Herston Road, Brisbane, QLD 4006, Australia
${ }^{20}$ Department of Clinical Genetics, Academic Medical Center, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands
${ }^{21}$ City of Hope Clinical Cancer Genomics Community Research Network, 1500 East Duarte Road, Duarte, CA 91010, USA
${ }^{22}$ Yorkshire Regional Genetics Service, Chapel Allerton Hospital, Leeds, UK
${ }^{23}$ Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Via Gattamelata 64, Padua, Italy
${ }^{24}$ Department of Clinical Genetics, Helsinki University Hospital, P.O. BOX 160 (Meilahdentie 2), 00029 HUS, Finland
${ }^{25}$ Hereditary Cancer Clinic, Prince of Wales Hospital, High Street, Randwick, NSW 2031 Australia
${ }^{26}$ Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, Ontario M5G 1X5, Canada; Department of Molecular Genetics, University of Toronto, Toronto, Ontario
${ }^{27}$ Department of Pathology, hus 9, Landspitali-LSH v/Hringbraut, 101 Reykjavik, Iceland
${ }^{28}$ Department of Gynaecology and Obstetrics, University Hospital of Schleswig-Holstein, Campus Kiel, Christian-Albrechts University Kiel, Germany
${ }^{29}$ Department of Breast Medical Oncology and Clinical Cancer Genetics Program, University Of Texas MD Anderson Cancer Center, 1515 Pressler Street, CBP 5, Houston, TX, USA
${ }^{30}$ Dept of OB/GYN and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria, Waehringer Guertel 18-20, A 1090 Vienna, Austria
${ }^{31}$ Unit of Medical Genetics, Department of Medical Oncology and Hematology, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Instituto Nazionale Tumori (INT), Via Giacomo Venezian 1, 20133 Milan, Italy
${ }^{32}$ Department of Medical Oncology. University Hospital, Vall d'Hebron, Barcelona, Spain
${ }^{33}$ Division of Cancer Prevention and Genetics, Istituto Europeo di Oncologia (IEO), via Ripamonti 435, 20141 Milan, Italy
${ }^{34}$ Laboratory of Cell Biology, Department of Pathology, hus 9, Landspitali-LSH v/Hringbraut, 101 Reykjavik, Iceland and BMC (Biomedical Centre), Faculty of Medicine, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavik, Iceland
${ }^{35}$ Human Genetics Group and Genotyping Unit (CEGEN), Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
${ }^{36}$ Dept of OB/GYN, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria, Waehringer Guertel 18-20, 1090 Vienna, Austria
${ }^{37}$ The Institute of Oncology, Chaim Sheba Medical Center, Ramat Gan 52621, Israel
${ }^{38}$ UCSF Cancer Genetics and Prevention Program, San Francisco, CA 94143-1714
${ }^{39}$ Department of Clinical Genetics, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ Maastricht, The Netherlands
${ }^{40}$ Unité de Prévention et d'Epidémiologie Génétique, Centre Léon Bérard, 28 rue Laënnec, Lyon, France
${ }^{41}$ Department of Medicine, Abramson Cancer Center, Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
${ }^{42}$ Department of Clinical Genetics, Royal Devon \& Exeter Hospital, Exeter, UK
${ }^{43}$ Service de Génétique, Institut Curie, 26, rue d'Ulm, Paris Cedex 05, France
${ }^{44}$ Department of Medicine, Huntsman Cancer Institute, 2000 Circle of Hope, Salt Lake City, UT 84112, USA
${ }^{45}$ Molecular Oncology Laboratory, Hospital Clinico San Carlos, IdISSC, CIBERONC. Martin Lagos s/n, Madrid, Spain
${ }^{46}$ Institute of Human Genetics, University Hospital of Schleswig-Holstein, Campus Kiel, ChristianAlbrechts University Kiel, Germany
${ }^{47}$ Section of Genetic Oncology, Dept. of Laboratory Medicine, University and University Hospital of Pisa, Pisa, Italy
${ }^{48}$ Research Division, Peter MacCallum Cancer Centre, 305 Gratten Street, Melbourne, VIC 3000, Australia
${ }^{49}$ CRCHU de Quebec-oncologie, Centre des maladies du sein Deschênes-Fabia, Hôpital du SaintSacrement,1050, chemin Sainte-Foy, Québec Canada
${ }^{50}$ Departments of Pediatrics and Medicine, 1150 St. Nicholas Avenue, Columbia University, New York, NY, 10032 USA
${ }^{51}$ Center for Medical Genetics, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
${ }^{52}$ Department of Clinical Genetics, Family Cancer Clinic, Erasmus University Medical Center, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands
${ }^{53}$ Sheffield Clinical Genetics Service, Sheffield Children's Hospital, Sheffield, UK
${ }^{54}$ Department of Clinical Genetics, South Glasgow University Hospitals, Glasgow, UK
${ }^{55}$ Unité d'oncogénétique, ICO-Centre René Gauducheau, Boulevard Jacques Monod, 44805 Nantes Saint Herblain Cedex, France
${ }^{56}$ Oncogenetics Group, Vall d'Hebron Institute of Oncology (VHIO), Clinical and Molecular Genetics Area, Vall d'Hebron University Hospital, Passeig Vall d'Hebron 119-129, Barcelona, Spain
${ }^{57}$ Department of Population Sciences, Beckman Research Institute of City of Hope, Duarte, CA USA
${ }^{58}$ Department of Gynaecology and Obstetrics, Ludwig-Maximilian University Munich, Germany
${ }^{59}$ Cáncer Hereditario, Instituto de Biología y Genética Molecular, IBGM, Universidad de Valladolid, Centro Superior de Investigaciones Científicas, UVA-CSIC. Valladolid, Spain
${ }^{60}$ Institute of Human Genetics, University of Münster, Münster, Germany
${ }^{61}$ Nottingham Clinical Genetics Service, Nottingham University Hospitals NHS Trust, Nottingham, UK
${ }^{62}$ Oncogenetics Team, The Institute of Cancer Research and Royal Marsden NHS Foundation Trust, Sutton, UK
${ }^{63}$ Department of Clinical Genetics, Lund University Hospital, Lund, Sweden
${ }^{64}$ Department of Oncology, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
${ }^{65}$ Institute for Medical Informatics, Statistics and Epidemiology, University of Leipzig, Germany
${ }^{66}$ Department of Gynaecology and Obstetrics, Division of Tumor Genetics, Klinikum rechts der Isar, Technical University Munich, Germany
${ }^{67}$ Genomic Medicine, Manchester Academic Health Sciences Centre, Division of Evolution and Genomic Sciences, University of Manchester, Central Manchester University Hospitals NHS Foundation Trust, Manchester, UK
${ }^{68}$ Centre de Lutte Contre le Cancer Georges François Leclerc, 1 rue Professeur Marion, BP 77 980, Dijon Cedex, France and Genomic and Immunotherapy Medical Institute, Dijon University Hospital, Dijon, France
${ }^{69}$ Molecular Diagnostic Unit, Hereditary Cancer Program, ICO-IDIBELL (Catalan Institute of OncologyBellvitge Biomedical Research Institute), CIBERONC, Gran Via de l'Hospitalet, 199-203. 08908 L'Hospitalet. Barcelona, Spain
${ }^{70}$ Laboratoire de Génétique Chromosomique, Hôtel Dieu Centre Hospitalier, BP 1125 Chambéry, France
${ }^{71}$ Department of Cancer Epidemiology and Genetics, Masaryk Memorial Cancer Institute, Zluty kopec 7, Brno, 65653, Czech Republic
${ }^{72}$ Ohio State University /Columbus Cancer Council, Columbus, OH 43221, USA
${ }^{73}$ Oncogenetics Department, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
${ }^{74}$ UCLA Schools of Medicine and Public Health, Division of Cancer Prevention \& Control Research, Jonsson Comprehensive Cancer Center, 650 Charles Young Drive South, Room A2-125 HS, Los Angeles, CA 90095-6900, USA
${ }^{75}$ Cancer Risk and Prevention Clinic, Dana-Farber Cancer Institute, 450 Brookline Avenue, Boston, MA, USA
${ }^{76}$ Centre of Familial Breast and Ovarian Cancer, Department of Medical Genetics, Institute of Human Genetics, University Würzburg, Germany
${ }^{77}$ Institut Curie, Department of Tumour Biology, Paris, France; Institut Curie, INSERM U830, Paris, France
${ }^{78}$ Department of Clinical Genetics, Rigshospitalet 4062, Blegdamsvej 9, København Ø, Denmark
${ }^{79}$ Service Régional Oncogénétique Poitou-Charentes, Centre Hospitalier, 79021 Niort
${ }^{80}$ Department of Molecular Medicine, University La Sapienza, and Istituto Pasteur - Fondazione CenciBolognetti, viale Regina Elena 291, 00161 Rome, Italy
${ }^{81}$ Bâtiment Cheney D, Centre Léon Bérard, 28 rue Laënnec, Lyon, France
${ }^{82}$ Ontario Cancer Genetics Network: Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada
${ }^{83}$ Department of Pathology and Laboratory Medicine, 3901 Rainbow Boulevard, 4019 Wahl Hall East, MS 3040, University of Kansas Medical Center, Kansas City, Kansas, USA
${ }^{84}$ Clinical Genetics Branch, DCEG, NCI, NIH, 9609 Medical Center Drive, Room 6E-454, Bethesda, MD, USA
${ }^{85}$ Department of Genetics and Pathology, Pomeranian Medical University, Unii Lubelskiej 1, Szczecin, Poland
${ }^{86}$ Center for Familial Breast and Ovarian Cancer, Center for Integrated Oncology (CIO), Medical Faculty, University Hospital Cologne, Cologne, Germany
${ }^{87}$ The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON), Coordinating center: Netherlands Cancer Institute, Amsterdam, The Netherlands
${ }^{88}$ Institute of Genetic Medicine, Centre for Life, Newcastle Upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
${ }^{89}$ Institute of Human Genetics, University Leipzig, 04107 Leipzig, Germany
${ }^{90}$ Family Cancer Clinic, Netherlands Cancer Institute, P.O. Box 90203, 1006 BE Amsterdam, The Netherlands
${ }^{91}$ Department of Gynaecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Germany
${ }^{92}$ N.N. Petrov Institute of Oncology, St.-Petersburg 197758, Russia
${ }^{93}$ Lombardi Comprehensive Cancer Center, Georgetown University, 3800 Reservoir Road NW, Washington, DC, USA
${ }^{94}$ Clinical Genetics, Guy's and St. Thomas' NHS Foundation Trust, London, UK
${ }^{95}$ Genetic Counseling Unit, Hereditary Cancer Program, IDIBGI (Institut d'Investigació Biomèdica de Girona), Catalan Institute of Oncology, CIBERONC, Av. França s/n. 1707 Girona, Spain
${ }^{96}$ Parkville Familial Cancer Centre, Peter MacCallum Cancer Centre, 305 Gratten Street, Melbourne, VIC 3000, Australia
${ }^{97}$ Vilnius University Hospital Santariskiu Clinics, Hereditary Cancer Competence Center Hematology, Oncology and Transfusion Medicine Center Room P519 Santariskiu st. 2,
LT-08661 Vilnius, Lithuania
${ }^{98}$ Department of Clinical Genetics, Aarhus University Hospital, Brendstrupgaardsvej 21C, Aarhus N, Denmark
${ }^{99}$ Department of Epidemiology, Cancer Prevention Institute of California, 2201 Walnut Avenue, Suite 300, Fremont, CA 94538, USA and Department of Health Research and Policy (Epidemiology) and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
${ }^{100}$ Clinical Genetics Research Laboratory, Dept. of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10044, USA
${ }^{101}$ Women's Cancer Program at the Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Suite 290W, Los Angeles, CA, USA
${ }^{102}$ Department of Gynecology and Obstetrics, Medical Faculty and University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
${ }^{103}$ Research Department, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia and The Sir Peter MacCallum Department of Oncology University of Melbourne, Parkville, Australia
${ }^{104}$ Department of Surgery, Daerim St. Mary's Hospital, 657 Siheung-daero, Yeongdeungpo-gu, Seoul, Korea
${ }^{105}$ Molecular Diagnostics Laboratory, INRASTES (Institute of Nuclear and Radiological Sciences and Technology), National Centre for Scientific Research "Demokritos", Patriarchou Gregoriou \& Neapoleos str., Aghia Paraskevi Attikis, Athens, Greece
${ }^{106}$ The Gyneco-Oncology Department, Chaim Sheba Medical Center, Ramat Gan 52621, Israel
${ }^{107}$ Servicio de Genética-CIBERER U705, Hospital de la Santa Creu i Sant Pau, Barcelona
${ }^{108}$ The Feinstein Institute for Medical Research 350 Community Drive Manhasset NY
${ }^{109}$ Department of Surgery, Soonchunhyang University and Seoul Hospital, 59 Daesagwan-Ro, Yongsan-Gu, Seoul, Korea
${ }^{110}$ Institut Curie, PSL Research University, Mines ParisTech, Inserm U900, 26 rue d'Ulm, F-75005 Paris, France
${ }^{111}$ Department of Oncology Radiumhemmet and Institution of Oncology and Patology Karolinska University Hospital and Karolinska Institutet
${ }^{112}$ Department of Health Sciences Research, Mayo Clinic, 13400 E. Scottsdale Blvd., Scottsdale, AZ, USA
${ }^{113}$ Oncogénétique, Institut Bergonié, 229 cours de l'Argonne, 33076 Bordeaux, France
${ }^{114}$ Clinical Genetics Branch, DCEG, NCI, NIH, 9609 Medical Center Drive, Room 6E-536, Bethesda, MD, USA
${ }^{115}$ Department of Gynecological Oncology and Clinical Cancer Genetics Program, University Of Texas MD Anderssen Cancer Center, 1515 Pressler Street, CPB 6, Houston, TX, USA
${ }^{116}$ Centre Antoine Lacassagne, 33 Avenue de Valombrose, Nice, France
${ }^{117}$ Laboratorio de Genética Molecular, Servicio de Genética, Hospital Universitario Cruces, BioCruces Health Research Institute, Spain
${ }^{118}$ Department of Surgery, National Institute of Oncology, Budapest, Hungary
${ }^{119}$ Department of Clinical Genetics, VU University Medical Center, P.O. Box 7057, 1007 MB Amsterdam, The Netherlands
${ }^{120}$ Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands
${ }^{121}$ Vilnius university Santariskiu hospital, National Center of Pathology, Baublio st. 5, Vilnius, Lithuania
${ }^{122}$ NRG Oncology, Statistics and Data Management Center, Roswell Park Cancer Institute, Elm St \& Carlton St, Buffalo, NY 14263, USA
${ }^{123}$ Department of Cancer Prevention and Control, Roswell Park Cancer Institute, Buffalo, NY, USA
${ }^{124}$ Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
${ }^{125}$ Department of Obstetrics and Gynecology, University of Helsinki and Helsinki University Hospital, Biomedicum Helsinki, P.O. BOX 700 (Haartmaninkatu 8), 00029 HUS, Finland
${ }^{126}$ Cancer Genetics Service, Division of Medical Oncology, National Cancer Centre Singapore, 11 Hospital Drive, Singapore 169610
${ }^{127}$ Institute of Medical Genetics and Applied Genomics, University of Tuebingen, Germany
${ }^{128}$ Center for Genomic Medicine, Rigshospitalet, University of Copenhagen, Denmark
${ }^{129} 513$ Parnassus Ave., HSE 901E, San Francisco, CA. 94143-0794, USA
${ }^{130}$ Clinical Genetics Research Laboratory, Dept. of Medicine, Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY 10044, USA
${ }^{131}$ Department of Clinical Genetics, Sahlgrenska University Hospital, Gothenburg, Sweden
${ }^{132}$ West Midlands Regional Genetics Service, Birmingham Women's Hospital Healthcare NHS Trust, Edgbaston, Birmingham, UK
${ }^{133}$ Human Genetics Group, Human Cancer Genetics Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain. Biomedical Network on Rare Diseases (CIBERER), Madrid, Spain
${ }^{134}$ Unit of Medical Genetics, Department of Biomedical, Experimental and Clinical Sciences, University of Florence, Viale Morgagni 50, 50134 Florence, Italy
${ }^{135}$ Department of Medical Sciences, University of Turin, Via Santena 19, 10126 Turin, Italy
${ }^{136}$ Section of Molecular Diagnostics, Department of Biochemistry, Aalborg University Hospital, Reberbansgade 15, Aalborg, Denmark
${ }^{137}$ Department of Genetics, Portuguese Oncology Institute of Porto (IPO Porto), Porto, Portugal, and Biomedical Sciences Institute (ICBAS), University of Porto, Porto, Portugal
${ }^{138}$ IFOM, The FIRC (Italian Foundation for Cancer Research) Institute of Molecular Oncology, via Adamello 16, 20139 Milan, Italy.
${ }^{139}$ Service de Génétique Clinique Chromosomique et Moléculaire, Hôpital Nord, CHU Saint Etienne, St Etienne cedex 2, France
${ }^{140}$ Unité d'Oncogénétique, CHU Arnaud de Villeneuve, 34295 Montpellier Cedex 5, France
${ }^{141}$ Unit of Molecular Bases of Genetic Risk and Genetic Testing, Department of Research, Fondazione IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) Istituto Nazionale Tumori (INT), c/o Amaedeolab, via GA Amadeo 42, 20133 Milan, Italy
${ }^{142}$ School of Women's and Children's Health, UNSW Sydney, Australia
${ }^{143}$ The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Australia
${ }^{144}$ Department of Clinical Genetics, Karolinska University Hospital L5:03, Stockholm S-171 76, Sweden
${ }^{145}$ Department of Basic Sciences, Shaukat Khanum Memorial Cancer Hospital and Research Centre (SKMCH \& RC) 7A, Block R3, Johar Town, Lahore, Punjab 54000, Pakistan
${ }^{146}$ Clinical Genetics Services, Dept. of Medicine, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, USA
${ }^{147}$ Division of Gynecologic Oncology, North Shore University Health System, Clinical Professor, University of Chicago, 2650 Ridge Avenue, Suite 1507 Walgreens, Evanston, IL 60201, USA
${ }^{148}$ All Wales Medical Genetics Services, University Hospital of Wales, Cardiff, UK
${ }^{149}$ Vilnius University Hospital Santariskiu Clinics, Centre of Woman's Health and pathology, Department of Gynecology, Santariskiu st. 2, Vilnius, Lithuania
${ }^{150}$ Clinical Cancer Genetics Program, Division of Human Genetics, Department of Internal Medicine, The Comprehensive Cancer Center, The Ohio State University, Columbus, USA
${ }^{151}$ Department of Hematology and Oncology, University of Kansas Medical Center, Suite 210, 2330 Shawnee Mission Parkway, Westwood, KS, USA
${ }^{152}$ North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust, London, UK
${ }^{153}$ Genomics Center, Centre Hospitalier Universitaire de Québec Research Center and Laval University, 2705 Laurier Boulevard, Quebec City (Quebec), Canada
${ }^{154}$ Medical Genetics Unit, St George's, University of London, UK
${ }^{155}$ Département Oncologie Génétique, Prévention et Dépistage, Institut Paoli-Calmettes, 232 boulevard Sainte-Margueritte, Marseille, France
${ }^{156}$ Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, Victoria, Australia
${ }^{157}$ Institute of Cell and Molecular Pathology, Hannover Medical School, Hannover, Germany
${ }^{158}$ Department of Human Genetics, University Hospital Heidelberg, Germany
${ }^{159}$ National Human Genome Research Institute, National Institutes of Health Building 50, Room 5312, 50 South Drive, MSC 004, Bethesda, MD, USA
${ }^{160}$ Department of Epidemiology, Columbia University, New York, NY, USA
${ }^{161}$ Genetic Counseling Unit, Hereditary Cancer Program, IDIBELL (Bellvitge Biomedical Research Institute), Catalan Institute of Oncology, CIBERONC, Gran Via de l'Hospitalet, 199-203. 08908 L'Hospitalet, Barcelona, Spain
${ }^{162}$ Department of Health Sciences Research, Mayo Clinic, 200 First Street SW, Rochester, Minnesota, USA
${ }^{163}$ Department of Medicine, Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
${ }^{164}$ Program in Cancer Genetics, Departments of Human Genetics and Oncology, McGill University, Montreal, Quebec, Canada
${ }^{165}$ Division of Human Genetics, Departments of Internal Medicine and Cancer Biology and Genetics, Comprehensive Cancer Center, The Ohio State University, 460 W. $12^{\text {th }}$ Avenue, Columbus, OH, USA
${ }^{166}$ Parkville Familial Cancer Centre, Royal Melbourne Hospital, Melbourne, Australia
${ }^{167}$ Department of Medical Oncology, Beth Israel Deaconess Medical Center, 330 Brookline Avenue Boston, Massachusetts 02215, USA
${ }^{168}$ Department of Clinical Genetics, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands
${ }^{169}$ Department of Genetics, University Medical Center Groningen, University Groningen, The Netherlands
${ }^{170}$ Family Cancer Clinic, Netherlands Cancer Institute, Amsterdam, The Netherlands
${ }^{171}$ Department of Medical Genetics, University Medical Center Utrecht, The Netherlands
${ }^{172}$ Unit of Hereditary Cancer, Department of Epidemiology, Prevention and Special Functions, IRCCS (Istituto Di Ricovero e Cura a Carattere Scientifico) AOU San Martino - IST Istituto Nazionale per la Ricerca sul Cancro, largo Rosanna Benzi 10, 16132 Genoa, Italy
${ }^{173}$ Institute of Human Genetics, Campus Virchov Klinikum, Charite Berlin, Germany
${ }^{174}$ Fundación Pública Galega Medicina Xenómica, calle Choupana s/n, Edificio de Consultas, Planta menos dos Santiago de Compostal, A Coruña, Spain
${ }^{175}$ Departamento de Investigacion y de Tumores Mamarios del Instituto Nacional de Cancerologia, Mexico City; and Centro de Cancer de Mama del Hospital Zambrano Hellion, Tecnologico de Monterrey, San Pedro Garza Garcia, Nuevo Leon.
${ }^{176}$ Department of Oncology, Karolinska University Hospital, Stockholm, Sweden
${ }^{177}$ Oxford Regional Genetics Service, Churchill Hospital, Oxford, UK
${ }^{178}$ Department of Gynaecology and Obstetrics, University Hospital Ulm, Germany
${ }^{179}$ Institute of Human Genetics, University Regensburg, Germany
${ }^{180}$ Institute of Oncology, Rivka Ziv Medical Center, 13000 Zefat, Israel
${ }^{181}$ Magee-Womens Hospital, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
${ }^{182}$ Center for Medical Genetics, NorthShore University HealthSystem, 1000 Central St, Suite 620, Evanston, IL, USA
${ }^{183}$ Medical Director, Center for Medical Genetics, North Shore University Health System, Clinical Assistant Professor of Medicine, University of Chicago Pritzker School of Medicine, 1000 Central Street, Suite 620, Evanston, IL 60201, USA

Corresponding Author:
Timothy R. Rebbeck, PhD
1101 Dana, 450 Brookline Avenue
Dana Farber Cancer Institute, Boston, MA 02215
T: 617-632-6128
Email: Timothy_Rebbeck@dfci.harvard.edu

Key Words: BRCA1, BRCA2, breast cancer, ovarian cancer, mutation, ethnicity, geography

Abstract

The prevalence and spectrum of germline mutations in BRCA1 and BRCA2 have been reported in single populations, with the majority of reports focused on Caucasians in Europe and North America. The Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA) has assembled data on 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations ascertained from 69 centers in 49 countries on 6 continents. This study comprehensively describes the characteristics of the 1,650 unique BRCA1 and 1,731 unique BRCA2 deleterious (disease-associated) mutations identified in the CIMBA database. We observed substantial variation in mutation type and frequency by geographical region and race/ethnicity. In addition to known founder mutations, common mutations were identified in specific racial/ethnic or geographic groups that may reflect founder mutations and which could be used in targeted (panel) first pass genotyping for specific populations. Knowledge of the population-specific mutational spectrum in BRCA1 and BRCA2 could inform efficient strategies for genetic testing and may justify a more broad-based oncogenetic testing in some populations.

BACKGROUND

Women who carry germline mutations in either BRCA1 [OMIM 113705] or BRCA2 [600185] are at a greatly increased risk of breast and ovarian cancers. Estimates of cancer risk associated with BRCA1 and BRCA2 mutations vary depending on the population studied. For mutations in BRCA1, the estimated average risk of breast and ovarian cancers ranges from $57-65 \%$ and $20-50 \%$, respectively (Chen and Parmigiani, 2007; Kuchenbaecker, et al., 2017). For BRCA2, average risk estimates range from 35-57\% and 5-23\%, respectively (Chen and Parmigiani, 2007; Kuchenbaecker, et al., 2017). Mutation-specific cancer risks have been reported that suggest breast cancer cluster regions (BCCR) and ovarian cancer cluster regions (OCCR) exist in both BRCA1 and BRCA2 (Kuchenbaecker, et al., 2017; Rebbeck, et al., 2015). The identification of mutations in BRCA1 or BRCA2 has important clinical implications, as knowledge of their presence is important for risk assessment and informs medical management for patients. Interventions, such as risk-reducing bilateral mastectomy and salpingooophorectomy or annual breast MRI screening, are available to women who carry deleterious BRCA1 or BRCA2 mutations to enable early detection of breast cancer and for active risk reduction by riskreducing surgery (Domchek, et al., 2010; Rebbeck, et al., 2002; Saslow, et al., 2007). The presence of BRCA1 or BRCA2 mutations also can influence cancer treatment decisions, principally around the use of platinum agents or poly (ADP-ribose) polymerase (PARP) inhibitors (Lord and Ashworth, 2017) or contralateral risk-reducing mastectomy. Increasing numbers of women are having clinical genetic testing for BRCA1 and BRCA2 mutations, and recommendations continue to expand to whom testing should be offered (NCCN, 2016).

In whites drawn from the general populations in North America and the United Kingdom, the prevalence of BRCA1 and BRCA2 mutations has been estimated around a broad range from 0.1-0.3\%, and 0.1$0.7 \%$, respectively (Peto, et al., 1999; Struewing, et al., 1997; Whittemore, et al., 2004). The Australian Lifepool study, studying a control population consisting of cancer-free women ascertained via population-based mammographic screening program, estimated the overall frequency of BRCA1 and

BRCA2 mutations to be 0.65% (1:153), with BRCA1 mutations at 0.20% (1:500) and BRCA2 mutations at $0.45 \%(1: 222)$ (Thompson, et al., 2016). Estimates from the Exome Aggregation Consortium (ExAC) are similar, with frequencies of BRCA1 and BRCA2 mutations (excluding The Cancer Genome Atlas (TCGA) data) at 0.21% (1:480) and 0.31% (1:327), respectively; or combined at 0.51% (1:195) (Maxwell, et al., 2016). As they do not include large genomic rearrangements, some newer populationbased estimates may still under-represent the total number of BRCA1 and BRCA2 mutations. Although the overall prevalence of BRCA1 and BRCA2 mutations in most general populations is low, many hundreds of thousands of yet-to-be-tested individuals worldwide carry these mutations.

The prevalence of founder mutations in some racial/ethnic groups is much higher. For example, the common mutations BRCA1 c.5266dup (5382insC), BRCA1 c.68_69del (185delAG) and BRCA2 c.5946del (6174deIT), have a combined prevalence of 2-3\% in U.S. Ashkenazi Jews (Roa, et al., 1996; Struewing, et al., 1997; Whittemore, et al., 2004). For these mutations, double heterozygotes in BRCA1 and BRCA2 also have been reported (Friedman, et al., 1998; Moslehi, et al., 2000; Ramus, et al., 1997; Rebbeck, et al., 2016). Several other founder mutations have been identified, including the Icelandic founder mutation BRCA2 c.771_775del (999del5) (Thorlacius, et al., 1996); the French Canadian mutations BRCA1 c.4327C>T (C4446T) and BRCA2 c.8537_8538del (8765delAG) (which is also the most common mutation in Yemenite Jews and Sardinia) (Manning, et al., 2001; Oros, et al., 2006b; Pisano, et al., 2000; Tonin, et al., 1999; Tonin, et al., 2001); the Polish mutations BRCA1 c.181T>G, and c.4035del (Gorski, et al., 2000); the BRCA1 c.548-?4185+?del in Mexico(Villarreal-Garza, et al., 2015b; Weitzel, et al., 2013), and others. These mutations represent the majority of mutations observed in these populations and have been confirmed as true founder mutations as they have common ancestral haplotypes (Laitman, et al., 2013; Neuhausen, et al., 1996; Oros, et al., 2006a). Common mutations have been identified in other populations, but they represent a smaller proportion of all unique BRCA1 and BRCA2 mutations, and have not been characterized as true founder mutations. There are multiple common mutations in Scandinavian, Dutch, French, and Italian populations (Ferla, et
al., 2007). Similarly, a number of common mutations specific to non-European populations also have been reported in Hispanic/Mexican, African-American, Middle Eastern, and Asian populations (Bu, et al., 2016; Ferla, et al., 2007; Kurian, 2010; Lang, et al., 2017; Ossa and Torres, 2016; Villarreal-Garza, et al., 2015b).

The mutational spectra in BRCA1 and BRCA2 are best delineated in whites from Europe and North America. However, data on mutational spectra in non-white populations of Asian, African, Mediterranean, South-American and Mexican Hispanic descent have also been reported (Abugattas, et al., 2015; Ahn, et al., 2007; Alemar, et al., 2016; Bu, et al., 2016; Eachkoti, et al., 2007; Ferla, et al., 2007; Gao, et al., 2000; Gonzalez-Hormazabal, et al.; Ho, et al., 2000; Jara, et al., 2006; John, et al., 2007; Kurian, 2010; Laitman, et al.; Lang, et al., 2017; Lee, et al., 2003; Li, et al., 2006; Nanda, et al., 2005; Ossa and Torres, 2016; Pal, et al., 2004; Rodríguez, et al., 2012; Seong, et al., 2009; Sharifah, et al.; Solano, et al., 2017; Song, et al., 2005; Song, et al., 2006; Toh, et al., 2008; Torres, et al., 2007; Troudi, et al., 2007; Villarreal-Garza, et al., 2015b; Vogel, et al., 2007; Weitzel, et al., 2005; Weitzel, et al., 2007; Zhang, et al., 2009). In the current study, we provide a global description of BRCA1 and $B R C A 2$ mutations by geography and race/ethnicity from the investigators of the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA).

METHODS

Details of centers participating in CIMBA and data collection protocols have been reported previously (Antoniou, et al., 2007). Details of the CIMBA initiative and information about the participating centers can be found at http://cimba.ccge.medschl.cam.ac.uk/h (Chenevix-Trench, et al., 2007). All included mutation carriers participated in clinical or research studies at the host institutions after providing informed consent under IRB-approved protocols. Sixty-nine centers and multicenter consortia submitted data that met the CIMBA inclusion criteria (Antoniou, et al., 2007). Only female carriers with pathogenic BRCA1 and/or BRCA2 mutations were included in the current analysis. One mutation
carrier per family in the CIMBA database was included in this report. The actual family relationships (e.g., pedigrees) were not available, but a variable that defined family membership supplied by each center was used for this purpose. Less than 1% of families (86 of 29,700) had two family members with two different mutations. In these situations, each mutation observed in the family was included in the analysis. In the case of the 94 dual mutation carriers (i.e., individuals with both BRCA1 and BRCA2 mutations), one of the two mutations was chosen at random for inclusion in the analysis.

The CIMBA data set was used to describe the distribution of mutations by effect and function. For the remaining analyses, mutations were excluded if self-reported race/ethnicity data were missing. Pathogenicity of mutation was defined as follows: 1) generating a premature termination codon (PTC), except variants generating a PTC after codon 1854 in BRCA1 and after codon 3309 of $B R C A 2$; 2) large in-frame deletions that span one or more exons; and 3) deletion of transcription regulatory regions (promoter and/or first exon) expected to cause lack of expression of mutant allele. We also included missense variants considered pathogenic by using multifactorial likelihood approaches (Bernstein, et al., 2006; Goldgar, et al., 2004). Mutations that did not meet the above criteria but have been classified as pathogenic by Myriad Genetics, Inc. (Salt Lake City, UT) also were included. Classification of nonsense-mediated decay (NMD) was based on in-silico predictions and was not based on molecular classification (Anczukow, et al., 2008).

Contingency table analysis using a chi-square test was used to test for differences in dichotomous variables, as was a t-test for continuous variables. Mutation counts are presented as the number of families with the mutation. Fisher's exact tests were used if sample sizes in any contingency table cell were less than five. Analyses were done in STATA, v. 14.2.

RESULTS

Mutations in BRCA1 and BRCA2

From the 26,861 BRCA1 and 16,954 BRCA2 mutation carriers in the CIMBA data set as of June 2017, 18,435 families with BRCA1 mutations and 11,351 families with BRCA2 mutations were studied to count only one occurrence of a mutation per family. Fromm among these families, 1,650 unique BRCA1 and 1,731 unique BRCA2 mutations were identified. The unique mutations and number of families in which each mutation was observed are listed in Supplementary Table 1. In each gene, the five most common mutations (including founder mutations) accounted for 33% of all mutations in BRCA1 (8,739 of 26,861 mutation carriers) and 19% of all mutations in BRCA2 (3,244 of 16,954 mutation carriers). A web site containing information about the most common mutations reported here can be found at: http://apps.ccge.medschl.cam.ac.uk/consortia/cimba/. This information may be periodically updated as new data become available.

Mutation Type and Effect

Table 1 presents a summary of the type of BRCA1 or BRCA2 mutations and their predicted effect on transcription and translation. The most common mutation type was frameshift followed by nonsense. The most common effect of BRCA1 and BRCA2 mutations was premature translation termination and most of the mutant mRNAs were predicted to undergo nonsense-mediated mRNA decay (NMD) (Anczukow, et al., 2008). Despite having the same spectrum of mutations in BRCA1 and BRCA2, the frequency distribution by mutation type, effect, or function differed significantly ($p<0.05$) between BRCA1 and BRCA2 mutation carriers for many groups, as shown in Table 1. These observed differences are largely because genomic rearrangements and missense mutations account for a much higher proportion of mutations in BRCA1 when compared with BRCA2, as previously described (Welcsh and King, 2001).

We and others have found that breast (BCCR) and ovarian (OCCR) cancer cluster regions exist that may confer differential cancer risks (Gayther, et al., 1997; Gayther, et al., 1995; Kuchenbaecker, et al., 2017; Rebbeck, et al., 2015). Figure 1 reports the relative frequency of mutations in the BCCR and OCCR by race/ethnicity. Compared with whites, we observed differences in the relative frequency of mutations in the BRCA1 BCCR and OCCR in Asians and Hispanics, and in the BRCA2 OCCR in Hispanics. To the degree that the mutations within the BCCRs and OCCRs conferred differential cancer risks, these data suggest that BRCA1 and BRCA2 mutation-associated cancer risks may vary by race/ethnicity.

Geography and Race/Ethnicity

The most common mutations by country are summarized in Table 2 (BRCA1) and Table 3 (BRCA2). The locations of the mutations that were observed in African American, Asian, and Hispanic populations are depicted in Figure 2 (BRCA1) and Figure 3 (BRCA2). Some countries (Albania, Bosnia, Costa Rica, Ireland, Honduras, Japan, Norway, Peru, Philippines, Qatar, Saudi Arabia, Romania, Venezuela and Turkey) contributed fewer than 10 mutation carriers to the CIMBA database. Many of these mutations were submitted to the central database by CIMBA centers that ascertained these patients, but these patients originated from a different country. Based on such small numbers, it was impossible to make inferences about the relative importance of mutations in these locations.

The mutational distribution among the major racial/ethnic groups and by geography are summarized in Tables 4 and 5. Table 4 includes only those individuals for whom self-identified race/ethnicity was recorded. Note that in some countries it is prohibited to collect data on race and ethnicity, so this information is missing. Among the 10 most common BRCA1 mutations in each racial/ethnic group, a few were seen in several populations, including the common Jewish and Eastern European founder mutations c.5266dup (5382insC) and c.68_69del (185deIAG); c.815_824dup in African-Americans and Hispanics; c.3756_3759del in Caucasian and Jews; and c.5503C>T and c.3770_3771del in Asians and

Jews. Similarly, common mutations in BRCA2 included c.5946del (6174delT) in whites and Jews; c.2808_2811del in whites, African Americans, Asians, Hispanics, and Jews; c.6275_6276del in whites and Hispanics; c.3847_3848del in whites and Jews; c.658_659del in African Americans and Hispanics; and c.3264dup in Hispanics and Jews. The majority of other common BRCA1 and BRCA2 mutations were only common within a single racial/ethnic group, particularly African Americans, Asians, and Hispanics. Of note, the vast majority of women who self-identified as Jewish carry the common Ashkenazi Jewish founder mutations BRCA1 c.5266dup and c.68_69del and BRCA2 c.5946del. Only 72 (3.9\%) of 1,852 BRCA1 mutation carrier families and 55 (5.6\%) of 990 BRCA2 mutation carrier families who self-identified as being Jewish carried other (non-founder) mutations. However, since many individuals of self-identified Jewish ancestry are only tested for the three common founder mutations, this number is likely to be underestimated.

In African Americans, the majority of BRCA1 mutations were not observed in any other racial/ethnic group, implying these mutations may be of African origin. In Hispanics, the most common BRCA1 mutations also were observed among individuals from other regions who did not self-identify as Hispanic, including BRCA1 c.3331_3334del (also observed in Australia, Europe, USA, and the UK), and BRCA1 c.68_69del (the common Jewish founder mutation) (Weitzel, et al., 2013; Weitzel, et al., 2005). The BRCA1 c.815_824dup mutation has been reported as being of African origin, but has also been reported as a common mutation in Mexican-Americans, perhaps as a reflection of the complex continental admixture of this population (Villarreal-Garza, et al., 2015b). BRCA1 c.390C>A and c.5496_5506delinsA were most commonly found in the Asian population. In BRCA2, c.2808_2811del was found among the 10 most frequent mutations in all races/ethnicities.

Recurrent Mutations

As expected, the most common mutations in the entire data set were the common founder mutations BRCA1 c.5266dup (5382insC), BRCA1 c.68_69del (185delAG), and BRCA2 c.5946del (6174deIT). In
part, the high frequency of these mutations is a consequence of panels that facilitate testing for these three mutations in women of Jewish descent. However, these two BRCA1 mutations also are relatively common in regions with a low proportion of individuals who self-identify as Jewish (e.g., Hungary, Czech Republic, France, Germany, Italy, Poland Spain, Russia, and UK). BRCA1 c.5266dup is a founder mutation thought to have originated 1800 years ago in Scandinavia/Northern Russia, entering the Ashkenazi-Jewish population 400-500 years ago, and thus has origins and a spread pattern independent of the Ashkenazim (Hamel, et al., 2011). Haplotype studies have been used to determine the origin of BRCA1 c.68_69deIAG in populations not considered to have a high proportion of Jewish ancestry. In some populations, such as the Hispanics in the USA and Latin American, it is associated with the Ashkenazi Jewish haplotype, presumably due to unrecognized (Jewish) ancestry (Ah Mew, et al., 2002; Velez, et al., 2012; Weitzel, et al., 2005). In other populations, such as Pakistani and Malaysians, where BRCA1 c.68_69del is a common mutation, it appears to have arisen independently, as it is carried on a distinct haplotype (Kadalmani, et al., 2007; Rashid, et al., 2006). A different haplotype was also reported for several British families (the 'Yorkshire haplotype') that is distinct from both the Jewish and the Indian-Pakistani haplotypes (Laitman, et al., 2013; Neuhausen, et al., 1996).

The only locations in which these three founder mutations were not commonly observed were Belgium and Iceland. Iceland has another common founder mutation (i.e., BRCA2 c.771_775del). Yet other common founder mutations included BRCA1 c.4327C>T and BRCA2 c.8537_8538del in Quebec. This latter mutation in BRCA2 also is the most common mutation in high-risk families in Sardinia (Pisano, et al., 2000) and was also reported in a few Jewish Yemenite families, with a distinct haplotype(Palomba, et al., 2007). The BRCA1 c.181T>G mutation was common in Central Europe (Austria, Czech Republic, Germany, Hungary, Italy and Poland), but also observed in the US, Argentina, Latvia, Lithuania and Israel. This mutation has been found on a common haplotype in individuals of Polish and Ashkenazi Jewish ancestry, suggesting it is an Eastern European founder mutation (Kaufman, et al., 2009). The large rearrangement mutation in BRCA1 c.548-?4185+?del (ex9-12del) appears to be an important
founder mutation in Mexico, with findings of a common haplotype and an estimated age at 74 generations ($\sim 1,500$ years) (Weitzel, et al., 2013).

We observed a number of other common mutations. BRCA1 c.3331_3334del comprised more than half of all mutations identified in Colombia, consistent with a previous report that this is a founder mutation in the Colombian population (Torres, et al., 2007). However, this mutation has not been found at high rates in a second Colombian population (Cock-Rada, et al., 2017). BRCA2 c.2808_2811del was frequently observed, not only as the most common mutation in France and Colombia, but also in other Western and Southern European countries, and destinations to which individuals from these countries have migrated. It estimated to have arisen approximately 80 (46-134) generations ago. However, due to the diversity of the haplotypes, multiple independent origins could not be ruled out (Neuhausen, et al., 1998). BRCA2 c.6275_6276del was a common BRCA2 mutation in Australia, the UK, Belgium, Spain and the Netherlands, and relatively common throughout North America. This mutation has been estimated to have originated $52(24-98)$ generations ago from a single founder (Neuhausen, et al., 1998). Recurrent or founder mutations were common in diverse populations. For example, the c.115T>G (Cys39Gly) mutation has been described as being common in Greenlanders (Hansen, et al., 2009). The c.2641G >T and c.7934del mutations have both been reported as founder mutation in South African Afrikaners (Reeves, et al., 2004).

DISCUSSION

We have reported worldwide distribution of BRCA1 and BRCA2 mutations curated in the CIMBA dataset. These results may aid in the understanding of the mutation distribution in specific populations as well as imparting clinical and biological implications for our understanding of BRCA1- and BRCA2associated carcinogenesis.

Clinical testing for BRCA1 and BRCA2 mutations has benefited substantially from knowledge about common mutations in specific populations. In many countries, the three common Ashkenazi-Jewish mutations are offered as a mutation testing panel for self-reported Ashkenazim, based on their frequency. This approach is much less expensive than comprehensive gene sequencing. The identification of commonly-occurring mutations in other populations could lead to more efficient and cost-effective mutation testing for BRCA1 and BRCA2. For example, Villareal-Garza et al. (VillarrealGarza, et al., 2015a) have developed the HISPANEL of mutations that optimizes testing in Hispanic/Latino populations. In the present study, we have identified mutations that may exist at a sufficient prevalence to warrant consideration for population-specific mutation testing panels. Criteria for developing such panels for BRCA1 and BRCA2 mutation screening are not available. However, mutations that are common in a specific population and that capture a sufficient percentage of mutations in high risk individuals and families in that population may be appropriate for use in targeted genetic testing. Before such panels can be developed, population-based studies of mutation frequency in specific populations should be undertaken. The data reported herein provide a list of the likely common mutations around which such panels could be developed, but the frequencies are not population-based, particularly in settings where founder mutations are preferentially screened (e.g., the common Jewish founder panels). Similarly, putative founder mutations identified by assessing common ancestral origins of specific mutations (rather than just high prevalence; Table 5) may form the basis of population-specific BRCA1 and BRCA2 mutation screening panels.

We report the distribution of BRCA1 and BRCA2 mutations in nearly 30,000 families of bona-fide disease-associated mutations. The strengths of this report include the large sample size that reflects a geographically and racially/ethnically diverse set of BRCA1 and BRCA2 mutation carriers. However, some limitations need to be considered. First, the sample set presented here does not reflect a systematic study of these populations or races/ethnicities; the data reflect patterns of recruitment (e.g., individuals with higher risk or prior diagnosis of cancer who consented to participate in research
protocols) that contributed to the CIMBA consortium. Certain racial/ethnic or socio-demographic groups are under- or over-represented or missing in our data set and, as a consequence, mutations may be over- or under-represented. For example, the existence of a commercial panel of three Jewish founder mutations enhances genetic testing for those mutations. As a result, the most common mutations in some populations (e.g., the USA) reflect the widespread use of this testing panel in the USA population. Similar arguments may also apply for other populations, where testing for certain founder mutations may be more frequent. Therefore the relative frequencies of mutations by population in the present study may be subject to such testing biases. Comparing the relative frequencies is also complicated by the inclusion of related individuals.

Second, although the CIMBA data represent most regions around the world, there are limitations related to which groups of individuals have been tested and which centers contributed data. In particular, non-white ancestry populations are still under-represented in research reports of mutation spectrum and frequency. Genetic testing in the developing world remains limited.

Third, we presented the mutations in terms of type or effect (Table 1), but these designations are not always based on experimental evidence. For example, NMD mutation status is almost always defined by a prediction rule rather than in vitro experiments that confirm the presence of nonsense mediated decay.

Fourth, we presented the occurrence of putative founder mutations. Some of these founder mutations (e.g., BRCA1 c.68_69del, BRCA2 c.771_775del) have been demonstrated to be true founder mutations based on actual ancestry analyses. Others, however, have only been identified as occurring commonly in certain populations, but haplotype or similar analyses of founder status may not have been done.

Fifth, our analysis was based on self-reported race/ethnicity of study participants, but this information may misclassify some groups of individuals. For example, some Middle Eastern groups may have been classified as "Caucasian" based on the data available, but in fact may represent a distinct group that was not captured here. Moreover, in some large centers participating in CIMBA, collecting information on race/ethnicity is prohibited and these mutation carriers were excluded from the comparisons.

Finally, we evaluated mutations by racial/ethnic and geographic designations, but some of these may be misclassified. For example, while $B R C A 1$ c.68_69del has been shown to arise independently of the common Jewish founder mutation in Pakistan (Rashid, et al., 2006), we cannot determine if the identified group also contains some Ashkenazi Jewish individuals.

The data presented herein provide new insights into the worldwide distribution of BRCA1 and BRCA2 mutations. The identification of common mutations in some racial/ethnic groups or geographical locations raises the possibility of defining more efficient strategies for genetic testing. Three common Jewish founder mutations BRCA1 c.5266dup (5382insC) and BRCA1 c.68_69del (185deIAG) and BRCA2 c.5946del (6174delT) have long been used as a primary genetic screening test for women of Jewish descent. The identification here of other mutations that are relatively common in specific populations may similarly provide the basis for other mutation-specific panels. For example, BRCA1 c.5266dup (5382insC) may be a useful as a single mutation screening test in Central-Eastern European populations before undertaking full sequencing. However, this basic test may be supplemented with screening for BRCA1 c. $181 \mathrm{~T}>\mathrm{G}$, as the second most common mutation of the region, and for some special cases, to include most common Hungarian BRCA2 founder mutation c.9097dup (9326insA) for those with Hungarian ancestry (van der Looij, et al., 2000, Ramus, et al., 1997b). In Iceland, only two mutations were reported: the common founder mutation BRCA2 c.771_775del and the rarer BRCA1 c. $5074 \mathrm{G}>\mathrm{A}$ (Bergthorsson, et al., 1998). A number of other situations can be identified in which specific mutations explain a large proportion of the total mutations observed in a population. These and other
such examples suggest that targeted mutation testing panels which include specific mutations could be developed for use in specific populations. Finally, we focused on female BRCA1 and BRCA2 mutation carriers in this report. However, the growing knowledge about BRCA1 and BRCA2-associated cancers in men, particularly prostate cancer (Ostrander and Udler, 2008; Pritchard, et al., 2016), suggests that the information presented herein will also have value in genetic testing of men.

ACKNOWLEDGMENTS

Study	Funding	Acknowledgements
CIMBA	The CIMBA data management and data	All the families and clinicians
	analysis were supported by Cancer Research -	who contribute to the studies;
	UK grants C12292/A20861, C12292/A11174.	Sue Healey, in particular taking
	ACA is a Cancer Research -UK Senior Cancer	on the task of mutation
	Research Fellow. GCT and ABS are NHMRC	classification with the late Olga
	Research Fellows. iCOGS: the European	Sinilnikova; Maggie Angelakos,
	Community's Seventh Framework Programme	Judi Maskiell, Gillian Dite,
	under grant agreement $\mathrm{n}^{\circ} 223175$ (HEALTH-	Helen Tsimiklis
	F2-2009-223175) (COGS), Cancer Research	
	UK (C1287/A10118, C1287/A 10710,	
	C12292/A11174, C1281/A12014,	
	C5047/A8384, C5047/A15007, C5047/A10692,	
	C8197/A16565), the National Institutes of	
	Health (CA128978) and Post-Cancer GWAS	
	initiative (1U19 CA148537, 1U19 CA148065	
	and 1U19 CA148112 - the GAME-ON initiative),	
	the Department of Defence (W81XWH-10-1-	
	0341), the Canadian Institutes of Health	
	Research (CIHR) for the CIHR Team in Familial	
	Risks of Breast Cancer (CRN-87521), and the	
	Ministry of Economic Development, Innovation	
	and Export Trade (PSR-SIIRI-701), Komen	
	Foundation for the Cure, the Breast Cancer	
	Research Foundation, and the Ovarian Cancer	
	Research Fund. The PERSPECTIVE project	
	was supported by the Government of Canada	
	through Genome Canada and the Canadian	
	Institutes of Health Research, the Ministry of	
	Economy, Science and Innovation through	
	Genome Québec, and The Quebec Breast	
	Cancer Foundation.	

Study	Funding	Acknowledgements
BCFR - all	This Breast Cancer Family Registry (BCFR) is supported by grant UM1 CA164920 from the USA National Cancer Institute. The content of this manuscript does not necessarily reflect the views or policies of the National Cancer Institute or any of the collaborating centers in the BCFR, nor does mention of trade names, commercial products, or organizations imply endorsement by the USA Government or the BCFR.	
BCFR-AU		Maggie Angelakos, Judi Maskiell, Gillian Dite, Helen Tsimiklis.
BCFR-NY		We wish to thank members and participants in the New York site of the Breast Cancer Family Registry for their contributions to the study.
BCFR-ON		We wish to thank members and participants in the Ontario Familial Breast Cancer Registry for their contributions to the study.
BFBOCC-LT	$B F B O C C$ is partly supported by: Lithuania (BFBOCC-LT): Research Council of Lithuania grant SEN-18/2015	BFBOCC-LTacknowledge Laimonas Griškevičius. BFBOCC-LV acknowledge Drs Janis Eglitis, Anna Krilova and Aivars Stengrevics.
BIDMMC	BIDMC is supported by the Breast Cancer Research Foundation	
BMBSA	BRCA-gene mutations and breast cancer in South African women (BMBSA) was supported by grants from the Cancer Association of South Africa (CANSA) to Elizabeth J. van Rensburg	BMBSA wish to thank the families who contribute to the BMBSA study
BRICOÖ	SLN was partially supported by the Morris and Horowitz Families Endowed Professorship.	
С̆ӖМıС̆	This work is funded by COONICET and Instituto Nacional del Cancer, Ministerio de Salud de la Nacion Argentina (1995/15)	We thank to Florencia Cardoso, Natalia Liria and Pablo Mele in their biospecimen and data management.
Conio	Cōio study is partially funded by the Spanish Ministry of Health PI16/00440 supported by FEDER funds, the Spanish Ministry of Economy and Competitiveness (MINECO) SAF2014-57680-R and the Spanish Research Network on Rare diseases (CIBERER)	We thank Álicia Barroso, Rosario Alonso and Guillermo Pita for their assistance.

Study	Funding	Acknowledgements
COH-CCGCRN	City of Hope Clinical Cancer Genomics Community Network and the Hereditary Cancer Research Registry, supported in part by the Breast Cancer Research Foundation, by Award Number RC4CA153828 (PI: J. Weitzel) from the National Cancer Institute and the Office of the Director, National Institutes of Health, and by the National Cancer Institute of the National Institutes of Health under Award Number R25CA171998 (PIs: K. Blazer and J. Weitzel). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health	
CONSIT TEAM	Associazione Italiana Ricerca sul Cancro (AIRC; IG2014 no.15547) to P. Radice; Funds from Italian citizens who allocated the 5×1000 share of their tax payment in support of the Fondazione IRCCS Istituto Nazionale Tumori, according to Italian laws (INT-Institutional strategic projects ' 5×1000 ') to S Manoukian; Associazione Italiana per la Ricerca sul Cancro IG17734; Italian Ministry of University and Research, PRIN projects; Istituto PasteurFondazione Cenci Bolognetti to G. Giannini ; FiorGen Foundation for Pharmacogenomics to L. Papi ; Funds from Italian citizens who allocated the 5×1000 share of their tax payment in support of the IRCCS AOU San Martino - IST according to Italian laws (institutional project) to L. Varesco ; Associazione Italiana Ricerca sul Cancro (AIRC; IG2015 no.16732) to P. Peterlongo	Bernard Peissel, Milena Mariani and Daniela Zaffaroni of the Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Davide Bondavalli, Maria Rosaria Calvello and Irene Feroce of the Istituto Europeo di Oncologia, Milan, Italy; Alessandra Viel and Riccardo Dolcetti of the CRO Aviano National Cancer Institute, Aviano (PN), Italy; Francesca Vignolo-Lutati of the University of Turin, Turin, Italy; Gabriele Capone of the University of Florence, Florence, Italy; Laura Ottini of the "Sapienza" University, Rome, Italy; Viviana Gismondi of the IRCCS AOU San Martino - IST, Istituto Nazionale per la Ricerca sul Cancro, Genoa, Italy; Maria Grazia Tibiletti and Daniela Furlan of the Ospedale di Circolo-Università dell'Insubria, Varese, Italy; Antonella Savarese and Aline Martayan of the Istituto Nazionale Tumori Regina Elena, Rome, Italy; Stefania Tommasi and Brunella Pilato of the Istituto Nazionale Tumori "Giovanni Paolo II" Bari, Italy, and the personnel of the Cogentech Cancer Genetic Test Laboratory, Milan, Italy.

Study	Funding	Acknowledgements
DFCI	This research has been supported by R01CA08534 and R01-CA102776 to TRR.	
DEMOKKİIOC	This research has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program of the General Secretariat for Research \& Technology: SYN11_10_19 NBCA. Investing in knowledge society through the European Social Fund.	
D̈KFFZ	The DKFZ study was supported by the DKFZ and in part by the SKMCH \& RC, Lahore, Pakistan and the Pontificia Universidad Javeriana, Bogota, Colombia .	We thank all participants, clinicians, family doctors, researchers, and technicians for their contributions and commitment to the DKFZ study and the collaborating groups in Lahore, Pakistan (Noor Muhammad, Sidra Gull, Seerat Bajwa, Faiz Ali Khan, Humaira Naeemi, Saima Faisal, Asif Loya, Mohammed Aasim Yusuf) and Bogota, Colombia (Ignacio Briceno, Fabian Gil).
EMBRACO	EMBRACE is supported by Cancer Research UK Grants C1287/A10118 and C1287/A11990. D. Gareth Evans and Fiona Lalloo are supported by an NIHR grant to the Biomedical Research Centre, Manchester. The Investigators at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust are supported by an NIHR grant to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust. Ros Eeles and Elizabeth Bancroft are supported by Cancer Research UK Grant C5047/A8385. Ros Eeles is also supported by NIHR support to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust	RE is supported by NIHR support to the Biomedical Research Centre at The Institute of Cancer Research and The Royal Marsden NHS Foundation Trust
FCOCC	The authors acknowledge support from The University of Kansas Cancer Center (P30 CA168524) and the Kansas Bioscience Authority Eminent Scholar Program. A.K.G. was funded by 5U01CA113916, R01CA140323, and by the Chancellors Distinguished Chair in Biomedical Sciences Professorship.	We thank Ms. JoEllen Weaver and Dr. Betsy Bove for their technical support.

Study	Funding	Acknowledgements
FPGMX	This work was partially supported by FISPI05/2275 and Mutua Madrileña Foundation (FMMA).	We would like to thank Marta Santamariña, Ana Blanco, Miguel Aguado, Uxía Esperón and Belinda Rodríguez for their contribution with the study.
$\mathrm{GCO}-\mathrm{HBOC}$	The German Consortium of Hereditary Breast and Ovarian Cancer (GC-HBOC) is supported by the German Cancer Aid (grant no 110837), Rita K. Schmutzler.	The Regensburg HBOC thanks Dr. Ivana Holzhauser and Dr. Ines Schönbuchner for their contributions to the study
GEMO	The study was supported by the Ligue	Genetic Modifiers of Cancer
	Nationale Contre le Cancer; the Association "Le	Risk in BRCA1 or BRCA2
	cancer du sein, parlons-en!" Award; the	Mutation Carriers (GEMO)
	Canadian Institutes of Health Research for the	study : National Cancer
	"CIHR Team in Familial Risks of Breast Cancer"	Genetics Network
	program and the French National Institute of	«UNICANCER Genetic Group»,
	Cancer (INCa).	France. We wish to pay a
		tribute to Olga M. Sinilnikova, who with Dominique Stoppa-
		Lyonnet initiated and
		coordinated GEMO until she
		sadly passed away on the 30th
		June 2014, and to thank all the
		GEMO collaborating groups for
		their contribution to this study.
		GEMO Collaborating Centers
		are: Coordinating Centres,
		Unité Mixte de Génétique
		Constitutionnelle des Cancers
		Equipe «Génétique du cancer
		du sein», Centre de Recherche
		en Cancérologie de Lyon: Olga
		Sinilnikova†, Sylvie Mazoyer, Francesca Damiola, Laure
		Barjhoux, Carole Verny-Pierre,
		Mélanie Léone, Nadia Boutry-
		Kryza, Alain Calender, Sophie
		Giraud; and Service de
		Génétique Oncologique, Institut
		Curie, Paris: Claude Houdayer,
		Etienne Rouleau, Lisa
		Golmard, Agnès Collet, Virginie
		Moncoutier, Muriel Belotti,
		Camille Elan, Catherine
		Nogues, Emmanuelle Fourme,
		Anne-Marie Birot. Institut
		Gustave Roussy, Villejuif:
		Brigitte Bressac-de-Paillerets,

Study	Funding	Acknowledgements
		Olivier Caron, Marine Guillaud-
		Bataille. Centre Jean Perrin,
		Clermont-Ferrand: Yves-Jean
		Bignon, Nancy Uhrhammer.
		Centre Léon Bérard, Lyon:
		Christine Lasset, Valérie
		Bonadona, Sandrine
		Handallou. Centre François
		Baclesse, Caen: Agnès
		Hardouin, Pascaline Berthet,
		Dominique Vaur, Laurent
		Castera. Institut Paoli
		Calmettes, Marseille: Hagay
		Sobol, Violaine Bourdon,
		Tetsuro Noguchi, Audrey
		Remenieras, François Eisinger.
		CHU Arnaud-de-Villeneuve,
	,	Montpellier: Isabelle Coupier,
)	Pascal Pujol. Centre Oscar Lambret, Lille: Jean-Philippe
	-	Peyrat, Joëlle Fournier,
		Françoise Révillion, Philippe
	D	Vennint, Claude Adenis.
		Centre Paul Strauss,
		Strasbourg: Danièle Muller,
		Jean-Pierre Fricker. Institut
		Bergonié, Bordeaux:
		Emmanuelle Barouk-Simonet,
		Françoise Bonnet, Virginie
		Bubien, Nicolas Sevenet,
		Michel Longy. Institut Claudius
		Regaud, Toulouse: Christine
		Toulas, Rosine Guimbaud,
		Laurence Gladieff, Viviane
		Feillel. CHU Grenoble:
		Dominique Leroux, Hélène
		Dreyfus, Christine Rebischung,
		Magalie Peysselon. CHU Dijon:
		Fanny Coron, Laurence Faivre.
		CHU St-Etienne: Fabienne
		Prieur, Marine Lebrun, Caroline
		Kientz. Hôtel Dieu Centre
		Hospitalier, Chambéry: Sandra
		Fert Ferrer. Centre Antoine
		Lacassagne, Nice: Marc
		Frénay. CHU Limoges:
		Laurence Vénat-Bouvet. CHU
		Nantes: Capucine Delnatte.
		CHU Bretonneau, Tours:
		Isabelle Mortemousque.

Study	Funding	Acknowledgements
		Groupe Hospitalier Pitié- Salpétrière, Paris: Florence Coulet, Chrystelle Colas, Florent Soubrier, Mathilde Warcoin. CHU Vandoeuvre-les- Nancy: Johanna Sokolowska, Myriam Bronner. CHU Besançon: Marie-Agnès Collonge-Rame, Alexandre Damette. Creighton University, Omaha, USA: Henry T. Lynch, Carrie L. Snyder.
GEORGETOWN	Cl received support from the Non-Therapeutic Subject Registry Shared Resource at Georgetown University (NIH/NCI grant P30CA051008), the Fisher Center for Familial Cancer Research, and Swing Fore the Cure.	
HCCBARRĖETȮO	This study was supported by Barretos Cancer Hospital, FINEP - CT-INFRA (02/2010) and FAPESP (2013/24633-2).	We wish to thank members of the Center of Molecular Diagnosis, Oncogenetics Department and Molecular Oncology Research Center of Barretos Cancer Hospital for their contributions to the study.
G-F̈ĀŠ	Bruce Poppe is a senior clinical investigator of FWO. Mattias Van Heetvelde obtained funding from IWT.	We wish to thank the technical support of Ilse Coene en Brecht Crombez.
ḢC̆S̆C	15/00059 from ISCIII (Spain), partially supported by European Regional Development FEDER funds	We acknowledge Ālicia Tosar and Paula Diaque for their technical assistance
HĖBČS	The HEBCS was financially supported by the Helsinki University Hospital Research Fund, Academy of Finland (266528), the Finnish Cancer Society and the Sigrid Juselius Foundation.	HEBCS would like to thank Taru A. Muranen and Johanna Kiiski, Drs. Carl Blomqvist and Kirsimari Aaltonen and RNs Irja Erkkilä and Virpi Palola for their help with the HEBCS data and samples. HEBCS would like to thank Dr. Kristiina Aittomäki, Taru A. Muranen, Drs. Carl Blomqvist and Kirsimari Aaltonen and RNs Irja Erkkilä and Virpi Palola for their help with the HEBCS data and samples.

Study	Funding	Acknowledgements
HEBON	The HEBON study is supported by the Dutch Cancer Society grants NKI1998-1854, NKI2004-3088, NKI2007-3756, the Netherlands Organization of Scientific Research grant NWO 91109024, the Pink Ribbon grants 110005 and 2014-187.WO76, the BBMRI grant NWO 184.021.007/CP46 and the Transcan grant JTC 2012 Cancer 12-054. HEBON thanks the registration teams of Dutch Cancer Registry (IKNL; S. Siesling, J. Verloop) and the Dutch Pathology database (PALGA; L. Overbeek) for part of the data collection.	The Hereditary Breast and Ovarian Cancer Research Group Netherlands (HEBON) consists of the following Collaborating Centers: Coordinating center: Netherlands Cancer Institute, Amsterdam, NL: M.A. Rookus, F.E. van Leeuwen, S. Verhoef, M.K. Schmidt, N.S. Russell, J.L. de Lange, R.Wijnands; Erasmus Medical Center, Rotterdam, NL: J.M. Collée, A.M.W. van den Ouweland, M.J. Hooning, C. Seynaeve, C.H.M. van Deurzen, I.M. Obdeijn; Leiden University Medical Center, NL: J.T. Wijnen, R.A.E.M. Tollenaar, P. Devilee, T.C.T.E.F. van Cronenburg; Radboud University Nijmegen Medical Center, NL: C.M. Kets; University Medical Center Utrecht, NL: M.G.E.M. Ausems, R.B. van der Luijt, C.C. van der Pol; Amsterdam Medical Center, NL: C.M. Aalfs, T.A.M. van Os; VU University Medical Center, Amsterdam, NL: J.J.P. Gille, Q. Waisfisz; Maastricht University Medical Center:University Hospital Maastricht, NL: E.B. GómezGarcia; University Medical Center Groningen, NL: J.C. Oosterwijk, A.H. van der Hout, M.J. Mourits, G.H. de Bock; The Netherlands Foundation for the detection of hereditary tumours, Leiden, NL: H.F. Vasen; The Netherlands Comprehensive Cancer Organization (IKNL): S. Siesling, J.Verloop; The Dutch Pathology Registry (PALGA): L.I.H. Overbeek.

Study	Funding	Acknowledgements
HRBCP	HRBCP is supported by The Hong Kong Hereditary Breast Cancer Family Registry and the Dr. Ellen Li Charitable Foundation, Hong Kong	We wish to thank Hong Kong Sanatorium and Hospital for their continued support
HŪNBOCS	Hungarian Breast and Ovarian Cancer Study was supported by Hungarian Research Grants KTIA-OTKA CK-80745, NKFIH/ OTKA K112228 and the Norwegian EEA Financial Mechanism Hu0115/NA/2008-3/OP-9Hungarian Breast and Ovarian Cancer Study was supported by Hungarian Research Grants KTIA-OTKA CK-80745, OTKA K-112228 and the Norwegian EEA Financial Mechanism Hu0115/NA/2008-3/OP-9	We wish to thank the Hungarian Breast and Ovarian Cancer Study Group members (Janos Papp, Tibor Vaszko, Aniko Bozsik, Timea Pocza, Zoltan Matrai, Gabriella Ivady , Judit Franko, Maria Balogh, Gabriella Domokos, Judit Ferenczi, Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary) and the clinicians and patients for their contributions to this study.We wish to thank the Hungarian Breast and Ovarian Cancer Study Group members (Janos Papp, Tibor Vaszko, Aniko Bozsik, Timea Pocza, Judit Franko, Maria Balogh, Gabriella Domokos, Judit Ferenczi, Department of Molecular Genetics, National Institute of Oncology, Budapest, Hungary) and the clinicians and patients for their contributions to this study.
HVH		We wish to thank the Oncogenetics Group (VHIO) and the High Risk and Cancer Prevention Unit of the University Hospital Vall d'Hebron. Acknowledgements to the Cellex Foundation for providing research facilities and equipment.
ICO	The authors would like to particularly acknowledge the support of the Asociación Española Contra el Cáncer (AECC), the Instituto de Salud Carlos III (organismo adscrito al Ministerio de Economía y Competitividad) and "Fondo Europeo de Desarrollo Regional (FEDER), una manera de hacer Europa" (PI10/01422, PI13/00285, PIE13/00022,	We wish to thank the ICO Hereditary Cancer Program team led by Dr. Gabriel Capella.

Study	Funding	Acknowledgements
	Pl15/00854, PI16/00563 and CIBERONC) and the Institut Català de la Salut and Autonomous Government of Catalonia (2009SGR290, 2014SGR338 and PERIS Project MedPerCan).ICO: Contract grant sponsor: Asociación Española Contra el Cáncer, Spanish Health Research Fund; Carlos III Health Institute; Catalan Health Institute and Autonomous Government of Catalonia. Contract grant numbers: ISCIIIRETIC RD06/0020/1051, RD12/0036/008, PI10/01422, PI10/00748, PI13/00285, PIE13/00022, 2009SGR290 and 2014SGR364.	
İCOC	The IHCC was supported by Grant PBZ_KBN_122/P05/2004	
ILUH	The ILUUH group was supported by the Icelandic Association "Walking for Breast Cancer Research" and by the Landspitali University Hospital Research Fund.	
INHERIT	This work was supported by the Canadian Institutes of Health Research for the "CIHR Team in Familial Risks of Breast Cancer" program, the Canadian Breast Cancer Research Alliance-grant \#019511 and the Ministry of Economic Development, Innovation and Export Trade - grant \# PSR-SIIRI-701.	We would like to thank Dr Martine Dumont, Martine Tranchant for sample management and skillful technical assistance. J.S. is Chairholder of the Canada Research Chair in Oncogenetics. J.S. and P.S. were part of the QC and Genotyping coordinating group of iCOGS (BCAC and CIMBA).
IOVCHBOCS	IOVCHBOCS is supported by Ministero della Salute and " 5×1000 " Istituto Oncologico Veneto grant.	
IPOBCS	This study was in part supported by Liga Portuguesa Contra o Cancro.	We wish to thank Drs. Catarina Santos, Patrícia Rocha and Pedro Pinto for their skillful contribution to the study.
KCONFAB	kConFab is supported by a grant from the National Breast Cancer Foundation, and previously by the National Health and Medical Research Council (NHMRC), the Queensland Cancer Fund, the Cancer Councils of New South Wales, Victoria, Tasmania and South Australia, and the Cancer Foundation of Western Australia; Amanda Spurdle is supported by an NHMRC Senior Research Fellowship.	We wish to thank Heather Thorne, Eveline Niedermayr, all the kConFab research nurses and staff, the heads and staff of the Family Cancer Clinics, and the Clinical Follow Up Study (which has received funding from the NHMRC, the National Breast Cancer Foundation, Cancer Australia, and the

Study	Funding	Acknowledgements
		National Institute of Health (USA)) for their contributions to this resource, and the many families who contribute to kConFab.
KÖHBRA	KÖHBA is partially supported by a grant from the National R\&D Program for Cancer Control, Ministry for Health, Welfare and Family Affairs, Republic of Korea (1020350 \& 1420190).	
MÄYO	MAYO is supported by NIH grants CA116167, CA128978 and CA176785, an NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA116201), a grant from the Breast Cancer Research Foundation, and a generous gift from the David F. and Margaret T. Grohne Family Foundation.	
MCGGiĽ	Jewish General Hospital Weekend to End Breast Cancer, Quebec Ministry of Economic Development, Innovation and Export Trade	
MODSQUĀD	MODSQUAD was supported by MH CZ - DRO (MMCI, 00209805) and by the European Regional Development Fund and the State Budget of the Czech Republic (RECAMO, CZ.1.05/2.1.00/03.0101) to LF, and by Charles University in Prague project UNCE204024 (MZ).	Modifier Study of Quantitative Effects on Disease (MODSQUAD): MODSQUAD acknowledges ModSQuaD members and Michal Zikan, Petr Pohlreich and Zdenek Kleibl (Oncogynecologic Center and Department of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic).
MüV̆		We wish to thank Daniela Muhr and the Senology team, and the clinicians and patients for their contributions to this study.
M̄S̈K̆C	MSKCC is supported by grants from the Breast Cancer Research Foundation, the Robert and Kate Niehaus Clinical Cancer Genetics Initiative, the Andrew Sabin Research Fund. and the NIH/NCI Cancer Center Support Grant P30 CA008748.	Anne Lincoln, Lauren Jacobs
MüV		We wish to thank Daniela Muhr and the Senology team, and the clinicians and patients for their contributions to this study.

Study	Funding	Acknowledgements
NCCS	Dr J Ngeow is supported by grants from National Medical Research Council of Singapore; Ministry of Health Health Services Research Grant Singapore and Lee Foundation Singapore	We would like to thank all patients, families and clinicians who contributed data and time to this study.
NC̄İ	The research of Drs. MH Greene, PL Mai, and JT Loud was supported by the Intramural Research Program of the US National Cancer Institute, NIH, and by support services contracts NO2-CP-11019-50 and N02-CP-65504 with Westat, Inc, Rockville, MD.	
NNPIO	This work has been supported by the Russian Federation for Basic Research (grants 14-0493959 and 15-04-01744).	
Northshore		We would like to thank Wendy Rubinstein and the following genetic counselors for help with participant recruitment: Scott Weissman, Anna Newlin, Kristen Vogel, Lisa DellafaveCastillo, Shelly Weiss
NRG Oncology	This study was supported by NRG Oncology Operations grant number U10 CA180868 as well as NRG SDMC grant U10 CA180822, Gynecologic Oncology Group (GOG) Administrative Office and the GOG Tissue Bank (CA 27469) and the GOG Statistical and Data Center (CA 37517). Drs. Greene, Mai and Loud were supported by funding from the Intramural Research Program, NCl .	We thank the investigators of the Australia New Zealand NRG Oncology group
OCGN		We wish to thank members and participants in the Ontario Cancer Genetics Network for their contributions to the study.
OSU COG	OSUCCG is supported by the Ohio State University Comprehensive Cancer Center.	Kevin Sweet, Caroline Craven, Julia Cooper, and Michelle O'Conor were instrumental in accrual of study participants, ascertainment of medical records and database management.
PBCS	This work was supported by the ITT (Istituto Toscano Tumori) grants 2011-2013.	
ŠEABAASAS	Ministry of Science, Technology and Innovation, Ministry of Higher Education (UM.C/HIR/MOHE/06) and Cancer Research Initiatives Foundation	We would like to thank Yip Cheng Har, Nur Aishah Mohd Taib, Phuah Sze Yee, Norhashimah Hassan and all

Study	Funding	Acknowledgements
		the research nurses, research assistants and doctors involved in the MyBrCa Study for assistance in patient recruitment, data collection and sample preparation. In addition, we thank Philip lau, Sng Jen-Hwei and Sharifah Nor Akmal for contributing samples from the Singapore Breast Cancer Study and the HUKMHKL Study respectively. The Malaysian Breast Cancer Genetic Study is funded by research grants from the Malaysian Ministry of Science, Technology and Innovation, Ministry of Higher Education (UM.C/HIR/MOHE/06) and charitable funding from Cancer Research Initiatives Foundation.
ŞMC	This project was partially funded through a grant by the Israel cancer association and the funding for the Israeli Inherited breast cancer consortium	SMC team wishes to acknowledge the assistance of the Meirav Comprehensive breast cancer center team at the Sheba Medical Center for assistance in this study.
SWE-BRCA	SWE-BRCAA cólaborators are supported by the Swedish Cancer Society	Swedish scientists participating as SWE-BRCA collaborators are: from Lund University and University Hospital: Âke Borg, Håkan Olsson, Helena Jernström, Karin Henriksson, Katja Harbst, Maria Soller, Ulf Kristoffersson; from Gothenburg Sahlgrenska University Hospital: Margareta Nordling, Per Karlsson, Zakaria Einbeigi; from Stockholm and Karolinska University Hospital: Annika Lindblom, Brita Arver, Gisela Barbany Bustinza, Johanna Rantala; from Umeá University Hospital: Beatrice Melin, Christina Edwinsdotter Ardnor, Monica Emanuelsson; from Uppsala University: Maritta Hellström Pigg, Richard

Study	Funding	Äcknowledgements
		Rosenquist; from Linköping University Hospital: Marie Stenmark-Askmalm, Sigrun Liedgren
ÜC̈HIC̈ĂĞŎ	UCOHCAZAGO is supported by NCI Specialized Program of Research Excellence (SPORE) in Breast Cancer (CA125183), R01 CA142996, 1U01CA161032 and by the Ralph and Marion Falk Medical Research Trust, the Entertainment Industry Fund National Women's Cancer Research Alliance and the Breast Cancer research Foundation. OIO is an ACS Clinical Research Professor.	We wish to thank Cecilia Zvocec, Qun Niu, physicians, genetic counselors, research nurses and staff of the Cancer Risk Clinic for their contributions to this resource, and the many families who contribute to our program.
ÜČĽă	Jonsson Comprehensive Cancer Center Foundation; Breast Cancer Research Foundation	We thank Joyce Sexdon MS̄ḠC and Lorna Kwan, MPH for assembling the data for this study.
ÜC̄Ş	ÜC̄SF Cancer Risk Program and Helen Diiler Family Comprehensive Cancer Center	We would like to thank the following genetic counselors for participant recruitment: Beth Crawford, Kate Loranger, Julie Mak, Nicola Stewart, Robin Lee, and Peggy Conrad. And thanks to Ms. Salina Chan for her data management.
ÜǨÖCR	ÜK̄FOOCR was supported by a project grant from CRUK to Paul Pharoah.	We thank Simon Gayther, Carole Pye, Patricia Harrington and Eva Wozniak for their contributions towards the UKFOCR.
ÜPENN	National Institutes of Health (NiH) (RO1CA102776 and R01-CA083855; Breast Cancer Research Foundation; Susan G. Komen Foundation for the cure, Basser Research Center for BRCA	
UPITT/MWH	Frieda G. and Saul F. Shapira BRCAAssociated Cancer Research Program; Hackers for Hope Pittsburgh	
$\stackrel{\square}{\mathrm{V}} \mathrm{F} \mathrm{CO} \mathrm{T}$ G	Victorian Cancer Aggency, Cancer Australia, National Breast Cancer Foundation	Geoffrey Lindeman, Marion Harris, Martin Delatycki of the Victorian Familial Cancer Trials Group. We thank Sarah Sawyer and Rebecca Driessen for assembling this data and Ella Thompson for performing all DNA amplification.

Study	Funding	
	Beth Y. Karlan was supported by the American	
	Cancer Society Early Detection Professorship	
	(SIOP-06-258-06-COUN) and the National	
	Center for Advancing Translational Sciences	
	(NCATS), Grant UL1TR000124	

REFERENCES

Abugattas J, Llacuachaqui M, Allende YS, Velásquez AA, Velarde R, Cotrina J, Garcés M, León M, Calderón G, de la Cruz M and others. 2015. Prevalence of BRCA1 and BRCA2 mutations in unselected breast cancer patients from Peru. Clin Genet 88(4):371-5.
Ah Mew N, Hamel N, Galvez M, Al-Saffar M, Foulkes WD. 2002. Haplotype analysis of a BRCA1: 185delAG mutation in a Chilean family supports its Ashkenazi origins. Clinical Genetics 62(2):151-6.
Ahn SH, Son BH, Yoon KS, Noh DY, Han W, Kim SW, Lee ES, Park HL, Hong YJ, Choi JJ and others. 2007. BRCA1 and BRCA2 germline mutations in Korean breast cancer patients at high risk of carrying mutations. Cancer Lett 245(1-2):90-5.
Alemar B, Herzog J, Brinckmann Oliveira Netto C, Artigalás O, Schwartz IVD, Matzenbacher Bittar C, Ashton-Prolla P, Weitzel JN. 2016. Prevalence of Hispanic BRCA1 and BRCA2 mutations among hereditary breast and ovarian cancer patients from Brazil reveals differences among Latin American populations. Cancer Genet 209(9):417-422.
Anczukow O, Ware MD, Buisson M, Zetoune AB, Stoppa-Lyonnet D, Sinilnikova OM, Mazoyer S. 2008. Does the nonsense-mediated mRNA decay mechanism prevent the synthesis of truncated BRCA1, CHK2, and p53 proteins? Hum Mutat 29(1):65-73.
Antoniou AC, Sinilnikova OM, Simard J, Léoné M, Dumont M, Neuhausen SL, Struewing JP, StoppaLyonnet D, Barjhoux L, Hughes DJ and others. 2007. RAD51 135G-->C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81(6):1186-200.
Bergthorsson JT, Jonasdottir A, Johannesdottir G, Arason A, Egilsson V, Gayther S, Borg A, Hakanson S, Ingvarsson S, Barkardottir RB. 1998. Identification of a novel splice-site mutation of the BRCA1 gene in two breast cancer families: screening reveals low frequency in Icelandic breast cancer patients. Human Mutation Suppl 1:S195-7.
Bernstein JL, Teraoka S, Southey MC, Jenkins MA, Andrulis IL, Knight JA, John EM, Lapinski R, Wolitzer AL, Whittemore AS and others. 2006. Population-based estimates of breast cancer risks associated with ATM gene variants $c .7271 T>G$ and $c .1066-6 T>G$ (IVS10-6T>G) from the Breast Cancer Family Registry. Hum Mutat 27(11):1122-8.
Bu R, Siraj AK, Al-Obaisi KA, Beg S, Al Hazmi M, Ajarim D, Tulbah A, Al-Dayel F, Al-Kuraya KS. 2016. Identification of novel BRCA founder mutations in Middle Eastern breast cancer patients using capture and Sanger sequencing analysis. Int J Cancer 139(5):1091-7.
Buisson M, Anczukow O, Zetoune AB, Ware MD, Mazoyer S. 2006. The 185deIAG mutation (c.68_69deIAG) in the BRCA1 gene triggers translation reinitiation at a downstream AUG codon. Hum Mutat 27(10):1024-9.
Chen S, Parmigiani G. 2007. Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25(11):1329-33.
Chenevix-Trench G, Milne RL, Antoniou AC, Couch FJ, Easton DF, Goldgar DE, CIMBA. 2007. An international initiative to identify genetic modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: the Consortium of Investigators of Modifiers of BRCA1 and BRCA2 (CIMBA). Breast Cancer Res 9(2):104.

Cock-Rada AM, Ossa CA, Garcia HI, Gomez LR. 2017. A multi-gene panel study in hereditary breast and ovarian cancer in Colombia. Fam Cancer.
Domchek SM, Friebel TM, Singer CF, Evans DG, Lynch HT, Isaacs C, Garber JE, Neuhausen SL, Matloff E, Eeles R and others. 2010. Association of Risk-Reducing Surgery in BRCA1 or BRCA2 Mutation Carriers With Cancer Risk and Mortality. Jama-Journal of the American Medical Association 304(9):967-975.
Eachkoti R, Hussain I, Afroze D, Aejazaziz S, Jan M, Shah ZA, Das BC, Siddiqi MA. 2007. BRCA1 and TP53 mutation spectrum of breast carcinoma in an ethnic population of Kashmir, an emerging high-risk area. Cancer Lett 248(2):308-20.
Ferla R, Calo V, Cascio S, Rinaldi G, Badalamenti G, Carreca I, Surmacz E, Colucci G, Bazan V, Russo A. 2007. Founder mutations in BRCA1 and BRCA2 genes. Ann Oncol 18 Suppl 6:vi93-8.
Friedman E, Bar-Sade Bruchim R, Kruglikova A, Risel S, Levy-Lahad E, Halle D, Bar-On E, GershoniBaruch R, Dagan E, Kepten I and others. 1998. Double heterozygotes for the Ashkenazi founder mutations in BRCA1 and BRCA2 genes. Am J Hum Genet 63(4):1224-7.
Gao Q, Tomlinson G, Das S, Cummings S, Sveen L, Fackenthal J, Schumm P, Olopade OI. 2000. Prevalence of BRCA1 and BRCA2 mutations among clinic-based African American families with breast cancer. Hum Genet 107(2):186-91.
Gayther SA, Mangion J, Russell P, Seal S, Barfoot R, Ponder BA, Stratton MR, Easton D. 1997. Variation of risks of breast and ovarian cancer associated with different germline mutations of the BRCA2 gene. Nature Genetics 15(1):103-5.
Gayther SA, Warren W, Mazoyer S, Russell PA, Harrington PA, Chiano M, Seal S, Hamoudi R, van Rensburg EJ, Dunning AM. 1995. Germline mutations of the BRCA1 gene in breast and ovarian cancer families provide evidence for a genotype-phenotype correlation. Nature Genetics 11(4):428-33.
Goldgar DE, Easton DF, Deffenbaugh AM, Monteiro AN, Tavtigian SV, Couch FJ. 2004. Integrated evaluation of DNA sequence variants of unknown clinical significance: application to BRCA1 and BRCA2. Am J Hum Genet 75(4):535-44.
Gonzalez-Hormazabal P, Gutierrez-Enriquez S, Gaete D, Reyes JM, Peralta O, Waugh E, Gomez F, Margarit S, Bravo T, Blanco R and others. Spectrum of BRCA1/2 point mutations and genomic rearrangements in high-risk breast/ovarian cancer Chilean families. Breast Cancer Res Treat.
Gorski B, Byrski T, Huzarski T, Jakubowska A, Menkiszak J, Gronwald J, Pluzanska A, Bebenek M, Fischer-Maliszewska L, Grzybowska E and others. 2000. Founder mutations in the BRCA1 gene in Polish families with breast-ovarian cancer. Am J Hum Genet 66(6):1963-8.
Hamel N, Feng BJ, Foretova L, Stoppa-Lyonnet D, Narod SA, Imyanitov E, Sinilnikova O, Tihomirova L, Lubinski J, Gronwald J and others. 2011. On the origin and diffusion of BRCA1 c.5266dupC (5382insC) in European populations. Eur J Hum Genet 19(3):300-6.
Hansen TV, Ejlertsen B, Albrechtsen A, Bergsten E, Bjerregaard P, Hansen T, Myrhøj T, Nielsen PB, Timmermans-Wielenga V, Andersen MK and others. 2009. A common Greenlandic Inuit BRCA1 RING domain founder mutation. Breast Cancer Res Treat 115(1):69-76.
Ho GH, Phang BH, Ng IS, Law HY, Soo KC, Ng EH. 2000. Novel germline BRCA1 mutations detected in women in singapore who developed breast carcinoma before the age of 36 years. Cancer 89(4):811-6.
Jara L, Ampuero S, Santibanez E, Seccia L, Rodriguez J, Bustamante M, Martinez V, Catenaccio A, Lay-Son G, Blanco R and others. 2006. BRCA1 and BRCA2 mutations in a South American population. Cancer Genet Cytogenet 166(1):36-45.
John EM, Miron A, Gong G, Phipps AI, Felberg A, Li FP, West DW, Whittemore AS. 2007. Prevalence of pathogenic BRCA1 mutation carriers in 5 US racial/ethnic groups. JAMA 298(24):2869-76.
Kadalmani K, Deepa S, Bagavathi S, Anishetty S, Thangaraj K, Gajalakshmi P. 2007. Independent origin of 185deIAG BRCA1 mutation in an Indian family. Neoplasma 54(1):51-6.
Kaufman B, Laitman Y, Gronwald J, Lubinski J, Friedman E. 2009. Haplotype of the C61G BRCA1 mutation in Polish and Jewish individuals. Genet Test Mol Biomarkers 13(4):465-9.

Kuchenbaecker KB, Hopper JL, Barnes DR, Phillips KA, Mooij TM, Roos-Blom MJ, Jervis S, van Leeuwen FE, Milne RL, Andrieu N and others. 2017. Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 317(23):2402-2416.
Kurian AW. 2010. BRCA1 and BRCA2 mutations across race and ethnicity: distribution and clinical implications. Curr Opin Obstet Gynecol 22(1):72-8.
Laitman Y, Borsthein RT, Stoppa-Lyonnet D, Dagan E, Castera L, Goislard M, Gershoni-Baruch R, Goldberg H, Kaufman B, Ben-Baruch N and others. Germline mutations in BRCA1 and BRCA2 genes in ethnically diverse high risk families in Israel. Breast Cancer Res Treat.
Laitman Y, Feng BJ, Zamir IM, Weitzel JN, Duncan P, Port D, Thirthagiri E, Teo SH, Evans G, Latif A and others. 2013. Haplotype analysis of the 185delAG BRCA1 mutation in ethnically diverse populations. Eur J Hum Genet 21(2):212-6.
Lang GT, Shi JX, Hu X, Zhang CH, Shan L, Song CG, Zhuang ZG, Cao AY, Ling H, Yu KD and others. 2017. The spectrum of BRCA mutations and characteristics of BRCA-associated breast cancers in China: Screening of 2,991 patients and 1,043 controls by next-generation sequencing. Int J Cancer 141(1):129-142.
Lee AS, Ho GH, Oh PC, Balram C, Ooi LL, Lim DT, Wong CY, Hong GS. 2003. Founder mutation in the BRCA1 gene in Malay breast cancer patients from Singapore. Human Mutation 22(2):178.
Li N, Zhang X, Cai Y, Xu X, Zhang L, Pan KF, Wu LY, Wang MR. 2006. BRCA1 germline mutations in Chinese patients with hereditary breast and ovarian cancer. Int J Gynecol Cancer 16 Suppl 1:172-8.
Lord CJ, Ashworth A. 2017. PARP inhibitors: Synthetic lethality in the clinic. Science 355(6330):11521158.

Manning AP, Abelovich D, Ghadirian P, Lambert JA, Frappier D, Provencher D, Robidoux A, Peretz T, Narod SA, Mes-Masson AM and others. 2001. Haplotype analysis of BRCA2 8765deIAG mutation carriers in French Canadian and Yemenite Jewish hereditary breast cancer families. Hum Hered 52(2):116-20.
Maxwell KN, Domchek SM, Nathanson KL, Robson ME. 2016. Population Frequency of Germline BRCA1/2 Mutations. J Clin Oncol 34(34):4183-4185.
Mikaelsdottir EK, Valgeirsdottir S, Eyfjord JE, Rafnar T. 2004. The Icelandic founder mutation BRCA2 999del5: analysis of expression. Breast Cancer Res 6(4):R284-90.
Moslehi R, Russo D, Phelan C, Jack E, Antman K, Narod S. 2000. An unaffected individual from a breast/ovarian cancer family with germline mutations in both BRCA1 and BRCA2. Clinical Genetics 57(1):70-3.
Nanda R, Schumm LP, Cummings S, Fackenthal JD, Sveen L, Ademuyiwa F, Cobleigh M, Esserman L, Lindor NM, Neuhausen SL and others. 2005. Genetic testing in an ethnically diverse cohort of high-risk women: a comparative analysis of BRCA1 and BRCA2 mutations in American families of European and African ancestry. JAMA 294(15):1925-33.
NCCN. 2016. Updates in Version 2.2016 of the NCCN Guidelines for Genetic/Familial High-Risk Assessment: Breast and Ovarian Cancer.
Neuhausen SL, Godwin AK, Gershoni-Baruch R, Schubert E, Garber J, Stoppa-Lyonnet D, Olah E, Csokay B, Serova O, Lalloo F and others. 1998. Haplotype and phenotype analysis of nine recurrent BRCA2 mutations in 111 families: results of an international study. American Journal of Human Genetics 62(6):1381-8.
Neuhausen SL, Mazoyer S, Friedman L, Stratton M, Offit K, Caligo A, Tomlinson G, Cannon-Albright L, Bishop T, Kelsell D and others. 1996. Haplotype and phenotype analysis of six recurrent BRCA1 mutations in 61 families: results of an international study. American Journal of Human Genetics 58(2):271-80.
Oros KK, Ghadirian P, Maugard CM, Perret C, Paredes Y, Mes-Masson AM, Foulkes WD, Provencher D, Tonin PN. 2006a. Application of BRCA1 and BRCA2 mutation carrier prediction models in breast and/or ovarian cancer families of French Canadian descent. Clin Genet 70(4):320-9.

Oros KK, Leblanc G, Arcand SL, Shen Z, Perret C, Mes-Masson AM, Foulkes WD, Ghadirian P, Provencher D, Tonin PN. 2006b. Haplotype analysis suggest common founders in carriers of the recurrent BRCA2 mutation, 3398delAAAAG, in French Canadian hereditary breast and/ovarian cancer families. BMC Med Genet 7:23.
Ossa CA, Torres D. 2016. Founder and Recurrent Mutations in BRCA1 and BRCA2 Genes in Latin American Countries: State of the Art and Literature Review. Oncologist 21(7):832-9.
Ostrander EA, Udler MS. 2008. The role of the BRCA2 gene in susceptibility to prostate cancer revisited. Cancer Epidemiol Biomarkers Prev 17(8):1843-8.
Pal T, Permuth-Wey J, Holtje T, Sutphen R. 2004. BRCA1 and BRCA2 mutations in a study of African American breast cancer patients. Cancer Epidemiol Biomarkers Prev 13(11 Pt 1):1794-9.
Palomba G, Cossu A, Friedman E, Budroni M, Farris A, Contu A, Pisano M, Baldinu P, Sini MC, Tanda F and others. 2007. Origin and distribution of the BRCA2-8765delAG mutation in breast cancer. BMC Cancer 7(1):132.
Perrin-Vidoz L, Sinilnikova OM, Stoppa-Lyonnet D, Lenoir GM, Mazoyer S. 2002. The nonsensemediated mRNA decay pathway triggers degradation of most BRCA1 mRNAs bearing premature termination codons. Human Molecular Genetics 11(23):2805-14.
Peto J, Collins N, Barfoot R, Seal S, Warren W, Rahman N, Easton DF, Evans C, Deacon J, Stratton MR. 1999. Prevalence of BRCA1 and BRCA2 gene mutations in patients with early-onset breast cancer. J Natl Cancer Inst 91(11):943-9.
Pisano M, Cossu A, Persico I, Palmieri G, Angius A, Casu G, Palomba G, Sarobba MG, Rocca PC, Dedola MF and others. 2000. Identification of a founder BRCA2 mutation in Sardinia. British Journal of Cancer 82(3):553-9.
Pritchard CC, Mateo J, Walsh MF, De Sarkar N, Abida W, Beltran H, Garofalo A, Gulati R, Carreira S, Eeles R and others. 2016. Inherited DNA-Repair Gene Mutations in Men with Metastatic Prostate Cancer. N Engl J Med 375(5):443-53.
Ramus SJ, Kote-Jarai Z, Friedman LS, van der Looij M, Gayther SA, Csokay B, Ponder BA, Olah E. 1997. Analysis of BRCA1 and BRCA2 mutations in Hungarian families with breast or breastovarian cancer. American Journal of Human Genetics 60(5):1242-6.
Rashid MU, Zaidi A, Torres D, Sultan F, Benner A, Naqvi B, Shakoori AR, Seidel-Renkert A, Farooq H, Narod S and others. 2006. Prevalence of BRCA1 and BRCA2 mutations in Pakistani breast and ovarian cancer patients. Int J Cancer 119(12):2832-9.
Rebbeck TR, Friebel TM, Mitra N, Wan F, Chen S, Andrulis IL, Apostolou P, Arnold N, Arun BK, Barrowdale D and others. 2016. Inheritance of deleterious mutations at both BRCA1 and BRCA2 in an international sample of 32,295 women. Breast Cancer Res 18(1):112.
Rebbeck TR, Lynch HT, Neuhausen SL, Narod SA, Van't Veer L, Garber JE, Evans G, Isaacs C, Daly MB, Matloff E and others. 2002. Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346(21):1616-22.
Rebbeck TR, Mitra N, Wan F, Sinilnikova OM, Healey S, McGuffog L, Mazoyer S, Chenevix-Trench G, Easton DF, Antoniou AC and others. 2015. Association of type and location of BRCA1 and BRCA2 mutations with risk of breast and ovarian cancer. JAMA 313(13):1347-61.
Reeves MD, Yawitch TM, van der Merwe NC, van den Berg HJ, Dreyer G, van Rensburg EJ. 2004. BRCA1 mutations in South African breast and/or ovarian cancer families: evidence of a novel founder mutation in Afrikaner families. Int J Cancer 110(5):677-82.
Roa BB, Boyd AA, Volcik K, Richards CS. 1996. Ashkenazi Jewish population frequencies for common mutations in BRCA1 and BRCA2. Nature Genetics 14(2):185-7.
Rodríguez AO, Llacuachaqui M, Pardo GG, Royer R, Larson G, Weitzel JN, Narod SA. 2012. BRCA1 and BRCA2 mutations among ovarian cancer patients from Colombia. Gynecol Oncol 124(2):236-43.
Saslow D, Boetes C, Burke W, Harms S, Leach MO, Lehman CD, Morris E, Pisano E, Schnall M, Sener S and others. 2007. American Cancer Society guidelines for breast screening with MRI as an adjunct to mammography. CA Cancer J Clin 57(2):75-89.

Seong MW, Cho S, Noh DY, Han W, Kim SW, Park CM, Park HW, Kim SY, Kim JY, Park SS. 2009. Comprehensive mutational analysis of BRCA1/BRCA2 for Korean breast cancer patients: evidence of a founder mutation. Clin Genet 76(2):152-60.
Sharifah NA, Nurismah MI, Lee HC, Aisyah AN, Clarence-Ko CH, Naqiyah I, Rohaizak M, Fuad I, AR AJ, Zarina AL and others. Identification of novel large genomic rearrangements at the BRCA1 locus in Malaysian women with breast cancer. Cancer Epidemiol 34(4):442-7.
Solano AR, Cardoso FC, Romano V, Perazzo F, Bas C, Recondo G, Santillan FB, Gonzalez E, Abalo E, Viniegra M and others. 2017. Spectrum of BRCA1/2 variants in 940 patients from Argentina including novel, deleterious and recurrent germline mutations: impact on healthcare and clinical practice. Oncotarget 8(36):60487-60495.
Song CG, Hu Z, Yuan WT, Di GH, Shen ZZ, Huang W, Shao ZM. 2005. [Mutational analysis of BRCA1 and BRCA2 genes in early-onset breast cancer patients in Shanghai]. Zhonghua Yi Xue Za Zhi 85(43):3030-4.
Song CG, Hu Z, Yuan WT, Di GH, Shen ZZ, Huang W, Shao ZM. 2006. [BRCA1 and BRCA2 gene mutations of familial breast cancer from Shanghai in China]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi 23(1):27-31.
Struewing JP, Hartge P, Wacholder S, Baker SM, Berlin M, McAdams M, Timmerman MM, Brody LC, Tucker MA. 1997. The risk of cancer associated with specific mutations of BRCA1 and BRCA2 among Ashkenazi Jews. N Engl J Med 336(20):1401-8.
Thompson ER, Rowley SM, Li N, McInerny S, Devereux L, Wong-Brown MW, Trainer AH, Mitchell G, Scott RJ, James PA and others. 2016. Panel Testing for Familial Breast Cancer: Calibrating the Tension Between Research and Clinical Care. J Clin Oncol 34(13):1455-9.
Thorlacius S, Olafsdottir G, Tryggvadottir L, Neuhausen S, Jonasson JG, Tavtigian SV, Tulinius H, Ogmundsdottir HM, Eyfjord JE. 1996. A single BRCA2 mutation in male and female breast cancer families from Iceland with varied cancer phenotypes. Nat Genet 13(1):117-9.
Toh GT, Kang P, Lee SS, Lee DS, Lee SY, Selamat S, Mohd Taib NA, Yoon SY, Yip CH, Teo SH. 2008. BRCA1 and BRCA2 germline mutations in Malaysian women with early-onset breast cancer without a family history. PLoS ONE 3(4):e2024.
Tonin PM, Mes-Masson AM, Narod SA, Ghadirian P, Provencher D. 1999. Founder BRCA1 and BRCA2 mutations in French Canadian ovarian cancer cases unselected for family history. Clinical Genetics 55(5):318-24.
Tonin PN, Perret C, Lambert JA, Paradis AJ, Kantemiroff T, Benoit MH, Martin G, Foulkes WD, Ghadirian P. 2001. Founder BRCA1 and BRCA2 mutations in early-onset French Canadian breast cancer cases unselected for family history. International Journal of Cancer 95(3):189-93.
Torres D, Rashid MU, Gil F, Umana A, Ramelli G, Robledo JF, Tawil M, Torregrosa L, Briceno I, Hamann U. 2007. High proportion of BRCA1/2 founder mutations in Hispanic breast/ovarian cancer families from Colombia. Breast Cancer Res Treat 103(2):225-32.
Troudi W, Uhrhammer N, Sibille C, Dahan C, Mahfoudh W, Bouchlaka Souissi C, Jalabert T, Chouchane L, Bignon YJ, Ben Ayed F and others. 2007. Contribution of the BRCA1 and BRCA2 mutations to breast cancer in Tunisia. J Hum Genet 52(11):915-20.
Velez C, Palamara PF, Guevara-Aguirre J, Hao L, Karafet T, Guevara-Aguirre M, Pearlman A, Oddoux C, Hammer M, Burns E and others. 2012. The impact of Converso Jews on the genomes of modern Latin Americans. Hum Genet 131(2):251-63.
Villarreal-Garza C, Alvarez-Gómez RM, Pérez-Plasencia C, Herrera LA, Herzog J, Castillo D, Mohar A, Castro C, Gallardo LN, Gallardo D and others. 2015a. Significant clinical impact of recurrent BRCA1 and BRCA2 mutations in Mexico. Cancer 121(3):372-8.
Villarreal-Garza C, Weitzel JN, Llacuachaqui M, Sifuentes E, Magallanes-Hoyos MC, Gallardo L, Alvarez-Gómez RM, Herzog J, Castillo D, Royer R and others. 2015b. The prevalence of BRCA1 and BRCA2 mutations among young Mexican women with triple-negative breast cancer. Breast Cancer Res Treat 150(2):389-94.

Vogel KJ, Atchley DP, Erlichman J, Broglio KR, Ready KJ, Valero V, Amos CI, Hortobagyi GN, Lu KH, Arun B. 2007. BRCA1 and BRCA2 genetic testing in Hispanic patients: mutation prevalence and evaluation of the BRCAPRO risk assessment model. J Clin Oncol 25(29):4635-41.
Ware MD, DeSilva D, Sinilnikova OM, Stoppa-Lyonnet D, Tavtigian SV, Mazoyer S. 2006. Does nonsense-mediated mRNA decay explain the ovarian cancer cluster region of the BRCA2 gene? Oncogene 25(2):323-8.
Weitzel JN, Clague J, Martir-Negron A, Ogaz R, Herzog J, Ricker C, Jungbluth C, Cina C, Duncan P, Unzeitig G and others. 2013. Prevalence and type of BRCA mutations in Hispanics undergoing genetic cancer risk assessment in the southwestern United States: a report from the Clinical Cancer Genetics Community Research Network. J Clin Oncol 31(2):210-6.
Weitzel JN, Lagos V, Blazer KR, Nelson R, Ricker C, Herzog J, McGuire C, Neuhausen S. 2005. Prevalence of BRCA mutations and founder effect in high-risk Hispanic families. Cancer Epidemiol Biomarkers Prev 14(7):1666-71.
Weitzel JN, Lagos VI, Herzog JS, Judkins T, Hendrickson B, Ho JS, Ricker CN, Lowstuter KJ, Blazer KR, Tomlinson G and others. 2007. Evidence for Common Ancestral Origin of a Recurring BRCA1 Genomic Rearrangement Identified in High-Risk Hispanic Families. Cancer Epidemiol Biomarkers Prev.
Welcsh PL, King MC. 2001. BRCA1 and BRCA2 and the genetics of breast and ovarian cancer. Human Molecular Genetics 10(7):705-13.
Whittemore AS, Gong G, John EM, McGuire V, Li FP, Ostrow KL, Dicioccio R, Felberg A, West DW. 2004. Prevalence of BRCA1 mutation carriers among U.S. non-Hispanic Whites. Cancer Epidemiol Biomarkers Prev 13(12):2078-83.
Zhang B, Fackenthal JD, Niu Q, Huo D, Sveen WE, DeMarco T, Adebamowo CA, Ogundiran T, Olopade OI. 2009. Evidence for an ancient BRCA1 mutation in breast cancer patients of Yoruban ancestry. Fam Cancer 8(1):15-22.

Page 49 of 114

Table 1: Characteristics of BRCA1 and BRCA2 Mutations in the CIMBA Database (by unique mutation)

			BRCA1	($\mathrm{N}=1,650$)	BRCA2	($\mathrm{N}=1,731$)	p-value
	Designation	Definition	N	\%	N	\%	
Mutation Type	Large Deletion (DL)	Genomic DNA deletion (encompassing at least 1 exon)	130	7.9	34	1.9	<0.0001
	Large Duplication (DP)	Genomic DNA duplication (encompassing at least 1 exon)	27	1.6	11	0.6	0.010
	Frameshift (FS)	Deletion or insertion resulting in a disruption of the open reading frame	948	57.5	1,141	65.9	<0.0001
	In-Frame Deletion (IFD)	Small deletions, splice site mutations or large genomic rearrangements that result in a change in the mRNA but do not change the open reading frame	1	<0.1	2	0.1	0.518
	Missense (MS)	Results in an altered amino acid	46	2.8	13	0.8	0.0001
	Nonsense (NS)	Point mutation resulting in a stop codon	313	19.0	380	22.0	0.027
	Splice (SP)	Results in aberrant RNA splicing	166	10.1	131	7.6	0.013
	Multiple Types (including those listed above)		20	1.1	19	1.1	1.00
Mutation Effect	No RNA	Mutation is predicted to abrogate RNA production	21	1.3	6	0.3	0.003
	Premature Termination Codon (PTC)	Result of a nonsense substitution, frameshift due to small deletion or insertion, aberrant splicing, or large genomic rearrangement	1,331	81.0	1,542	89.0	<0.0001
	Unknown/Other	Unknown effect	298	18.0	183	10.6	<0.0001
Mutation Function	Nonsense-Mediated Decay (NMD)* (Anczukow, et al., 2008)	Mutation is predicted to result in reduced transcript level due to decay of RNA and/or degradation/instability of truncated proteins	1,213	73.9	1,523	88.0	<0.0001
	No NMD	Mutations generating a premature stop codon in the first or last exon that is predicted not to result in NMD	58	3.5	16	0.9	<0.0001
	No RNA	Loss of expression due to deletion of promoter and/or transcription start site	21	1.3	6	0.4	0.003
	Re-Initiation	Mutations presumed to result in translation reinitiation but productern andialibe trateia, Inc.	4	0.2	0	0.0	0.294

	Designation	Definition	BRCA1	($\mathrm{N}=1,650$)	BRCA2	($\mathrm{N}=1,731$)	p-value
			N	\%	N	\%	
	NMD/Re-initiation Unknown/Other	Mutations presumed to result in translation reinitiation but produce unstable protein Unknown function	60 294	3.7 17.8	0 187	0.0 10.7	<0.0001
Mutation Class	1	Mutations predicted to be associated with unstable or no protein	1,298	78.6	1,529	88.3	<0.0001
	2	Mutations predicted to be associated with stable mutant proteins	112	6.8	36	2.1	<0.0001
	3	Unknown function	240	14.6	167	9.6	<0.0001

*References (Anczukow, et al., 2008; Buisson, et al., 2006; Mikaelsdottir, et al., 2004; Perrin-Vidoz, et al., 2002; Ware, et al., 2006)

Five Most Common Mutations (Number Observed)

John Wiley \& Sons, Inc.

Table 2: Common BRCA1 Mutations by Country of Origin (Continued)

1
$10^{\text {America }}$
1
12South/13Central
14America

15
16

Continent	Country	Families	Unique Mutations	Five Most Common Mutations (Number Observed)				
				1	2	3	4	5
	Nigeria	12	9	c.1310_1313del(3)	c.8817_8820delA(2)	c.5241_5242insTA(1)	c.2402_2412del(1)	c.994del(1)
Africa	South Africa	103	18	c.7934del(80)	c.5946del(6)	c.6944_6947del(2)	c.5213_5216del(1)	c.6939del(1)
Asia	Hong Kong	91	45	c.3109C>T(22)	c.2808_2811del(5)	c.7878G>A(5)	c.7007G>T(4)	c.9294C>G(4)
	Israel	339	5	c.5946del(330)	c.8537_8538del(5)	c.4936_4939del(2)	c.3847_3848del(1)	c.6024dup(1)
	Japan	1	1	c.5645C>A(1)				
	Korea	220	93	c.7480C>T(40)	c.3744_3747del(18)	c.1399A>T(16)	c.5576_5579del(14)	c.6724_6725del(6)
	Malaysia	64	47	c.262_263del(8)	c.2808_2811del(3)	c.3109C>T(3)	c.5073dup(3)	c. $809 \mathrm{C}>\mathrm{G}(2)$
	Pakistan	19	17	c.5222_5225del(3)	c. $8754+1 \mathrm{G}>\mathrm{T}(1)$	c. $92 \mathrm{G}>\mathrm{A}(1)$	c.6468_6469del(1)	c. $2990 \mathrm{~T}>\mathrm{G}(1)$
	Philippines	1	1	c.2023del(1)				
	Qatar	1	1	c.7977-1G>C(1)				
	Saudi Arabia	1	1	c. $473 \mathrm{C}>\mathrm{A}(1)$				
	Singapore	10	10	c.200_1910-877dup(1)	c.2808_2811del(1)	c.8961_8964del(1)	c. $8915 \mathrm{del}(1)$	c.956dup(1)
Australia	Australia	496	178	c.5946del(53)	c.6275_6276del(25)	c.7977-1G>C(11)	c.5682C>G(10)	c.3487_3848del(10)
Europe	Austria	185	87	c.8364G>A(17)	c.8755-1G>A(15)	c.3860del(11)	c.1813dup(8)	c.7846del(6)
	Belgium	116	39	c.6275_6276del(17)	c. $516+1 \mathrm{G}>\mathrm{T}(16)$	c.8904del(14)	c.1389_1390del(9)	c.3847_3848del(7)
	Czech Republic	81	42	c.8537_8538del(12)	c.7913_7917del(5)	c. $5645 \mathrm{C}>\mathrm{A}(4)$	c.2808_2811del(4)	c.9403del(4)
	Denmark	442	101	c. $7617+1 \mathrm{G}>\mathrm{A}(61)$	c.6373del(44)	c.1310_1313del (25)	c.6486_6489del(25)	c.3847_3848del(16)
	Finland	52	16	c.9118-2A>G(18)	c.7480C>T(12)	c.771_775del(7)	c.8327T>G(2)	c. $1286 \mathrm{~T}>\mathrm{G}(2)$
	France	997	375	c.2808_2811del(34)	c.5946del(27)	c.9026_9030del(22)	c. $8364 \mathrm{G}>\mathrm{A}(22)$	c.5909C>A(19)
	Germany	1,109	367	c.1813dup(51)	c.3847_3848del(34)	c.2808_2811del(29)	c.5946del(29)	c. $5682 \mathrm{C}>\mathrm{G}(23)$
	Greece	28	22	c.7976G>A(3)	c.5722_5723del(2)	c.9097dup(2)	c. $9501+1 \mathrm{G} \times \mathrm{A}(2)$	c.5722_5723del(2)
	Hungary	81	39	c.9097dup(17)	c.5946del(11)	c. 7913_7917del(4)	c. $6656 \mathrm{C}>\mathrm{G}(3)$	c.9403del(3)
	Iceland	89	1	c.771_775del(89)				
	Ireland	2	2	c.8951C>G(1)	c.5576_5579del(1)			
	Italy	706	242	c.8878C>T(33)	c.6468_6469del(31)	c.7180A>T(29)	c.5682C>G(25)	c.8247_8248delGA(1 8)
	Lithuania	26	11	c.658_659del(13)	c.3847_3848del(4)	c.6580dup(1)	c.6410del(1)	c.7879A>T(1)
	Netherlands	493	167	c.6275_6276del(38)	c.8067T>A(26)	c.5946del(25)	c.9672dupA(23)	c. 5213_5216del (21)
	Norway	2	1	c.771_775del(2)				
	Poland	23	20	c.5946del(3)	c.8946del(2)	c. 7913_7917del(1)	c.9294C>A(1)	c.635_636del(1)
	Portugal	71	22	c.156_157insAlu(39)	c.9097dup(5)	c.9382C>T(3)	c. $682-2 \mathrm{~A}>\mathrm{C}(2)$	c. $5645 \mathrm{G}>\mathrm{A}(2)$
	Romania	1	1	c.9097dup(1)				
	Russia	3	3	c.3682_3685del(1)	c.5410_5411del(1)	c.5946del(1)		
	Spain	670	217	c.3264dup(58)	c.2808_2811del(56)	c.9026_9030del(52)	c.6275_6276del(32)	c.9018C>A(16)
	Sweden	123	68	c.4258del(11)	c.2830A>T(7)	c.1796_1800del(6)	c.3847_3848del(6)	c.7558C>T5)
	UK	1,200	308	c.6275_6276del(107)	c.5946del(66)	c.4478_4481del(37)	c.755_758del(36)	c.5682C>G(33)
North America	Canada	311	108	c.8537_8538del(48)	c.5946del(45)	c.2808_2811del(13)	c.6275_6276del(11)	c.5857G>T(10)
	USA	3,064	626	c.5946del(742)	c.2808_2811del(86)	c.1813dup(62)	c.658_659del(50)	c.6275_6276del(49)
South/ Central	Argentina	49	21	c.5946del(18)	c.2808_2811del(5)	c.6037A>T(4)	c.9026_9030del(2)	c.5645C>G(2)
	Brazil	47	33	c. $2 \mathrm{~T}>\mathrm{G}(5)$	c.2808_2811del(4)	c.156_157insAlu(4)	c.6405_6409del(3)	c.1138del(2)
	Colombia	19	4	c.2808_2811del(1dphn		c.6275_6276del(1)	c. $93 \mathrm{G}>\mathrm{A}(1)$	
	Costa Rica	1	1	c.9235del(1)				

Page 55 of 114					Human MutatiqMost Common Mutations (Number Observed)				
	Continent	Country	Families	Unique Mutations	1	2	3	4	5
1	America	Honduras	1	1	c.7558C>T(1)				
3		Mexico	6	6	c.3264dup (1)	c.6275_6276del (1)	c. $2224 \mathrm{C}>\mathrm{T}$ (1)	c.5542del (1)	c.6502G>T (1)

Table 4. Ten Most Common Mutations by Self-Identified Race/Ethnicity (N) (by Family)

Common Mutation Rank	Caucasian	African American	Asian	Hispanic/Latino	Jewish	Other
1	c.5266dup(1962)	c.815_824dup(28)	c.390C>A(21)	c.68_69del(48)	c.68_69del(1341)	c.5266dup(535)
2	c.181T>G (696)	c.5324T>G (13)	c.5496_5506delinsA (17)	c.3331_3334del(41)	c.5266dup(439)	c.68_69del(268)
3	c.68_69del(625)	c.5177_5180del(9)	c.470_471del(14)	c. $5123 \mathrm{C}>\mathrm{A}(37)$	c.3756_3759del(5)	c.181T>G(208)
4	c.4035del(275)	c. $4357+1 \mathrm{G} \times \mathrm{A}(8)$	c.5503C>T(13)	c.548-?_4185+?del(30)	c.1757del(5)	$\begin{aligned} & \text { c.5333- } \\ & 36 _5406+400 \mathrm{del}(93) \end{aligned}$
J	c.4065_4068del(202)	c. $190 T>G(6)$	c.922_924delinsT(13)	c. $211 \mathrm{~A}>\mathrm{G}(20)$	c. $2934 \mathrm{~T}>\mathrm{G}(3)$	c.3481_3491del(91)
$\begin{array}{ll}\text { ron } & 6\end{array}$	c.3756_3759del(185)	c.68_69del(6)	c.68_69del(13)	c.815_824del(13)	c. $5503 \mathrm{C}>\mathrm{T}(2)$	c.1687C>T (91)
7	c. $1687 \mathrm{C}>\mathrm{T}$ (183)	c. $5467+1 \mathrm{G} \times \mathrm{A}(6)$	c.3770_3771del(12)	c. $2433 \mathrm{del}(11)$	c. $4185+1 \mathrm{G}>\mathrm{T}(2)$	c.4065_4068del(69)
8	c.4327C>T(176)	c. $182 \mathrm{G} \times \mathrm{A}(5)$	c. $2635 \mathrm{G} \times \mathrm{T}(12)$	c.1960A>T(11)	c.4689C>G(2)	c. $5277+1 \mathrm{G}>\mathrm{A}$ (68)
9	c.2475del(171)	c. $5251 \mathrm{C}>\mathrm{T}(4)$	c.2726dup(12)	c.3029_3030del(10)	c.3770_3771del(2)	c.2685_2686del(68)
10	$\begin{aligned} & \text { c. } 4186- \\ & ? . \quad 4357+? \text { dup }(158) \end{aligned}$	c. $4484 \mathrm{G}>\mathrm{T}(4)$	c.3627dup(11)	c. $4327 \mathrm{C}>\mathrm{T}$ (9)	c.4936del(2)	c.4327C>T(66)
Families	11,258	174	550	408	1,852	4,583
Unique Mutations	1,206	77	240	104	56	765
1	c.5946del(332)	c.2808_2811del(8)	c. $7480 \mathrm{C}>\mathrm{T}(42)$	c.3264dup(36)	c.5946del(935)	c.5946del(128)
2	c.6275_6276del(245)	c.4552del(8)	c. $3109 \mathrm{C}>\mathrm{T}(30)$	c.2808_2811del(19)	c.3847_3848del(4)	c.6275_6276del(89)
3	c.2808_2811del(223)	c. $9382 \mathrm{C}>\mathrm{T}(6)$	c.3744_3747del(19)	c. $145 \mathrm{G}>\mathrm{T}$ (11)	c. $1754 \mathrm{del}(4)$	c. 2808_2811del(64)
4	c.771_775del(119)	c.1310_1313del(5)	c.1399A>T(18)	c.9026_9030del(6)	c.9382C>T(3)	c.1813dup(63)
さ 5	c.3847_3848del(119)	c.5616_5620del(5)	c.5576_5579del(15)	c.658_659del(6)	c.5621_5624del(2)	c. $5645 \mathrm{C}>\mathrm{A}(50)$
$\begin{array}{ll}\text { ron } & 6\end{array}$	c.5682C>G(114)	c.6405_6409del(4)	c.2808_2811del(13)	c.5542del(6)	c.2808_2811del(2))	c.1310_1313del(46)
7	c.1813dup(107)	c.658_659del(4)	c.7878G>A(10)	c.3922G>T(6)	c.4829_4830del(2)	c.3847_3848del(40)
8	c.8537_8538del(94)	c.2957_2958insG(3)	c. 262 _263del(8)	c. 1813dup(4)	c.5238del(2)	c.5682C>G(31)
9	c.658_659del(91)	c. $7024 \mathrm{C}>\mathrm{T}(2)$	c. $7133 \mathrm{C}>\mathrm{G}(7)$	c.9699_9702del(4)	c.9207T>A(1)	c.9672dup(28)
10	c.7934del(89)	c.6531_6534del(2)	c.5164_5165del(7)	c.6275_6276del(4)	c.3264dup(1)	c.658_659del(28)
Families	7,156	125	538	207	990	2,551
Unique Mutations	1,242	77	248	91	44	753

Table 5. Ten Most Common Mutations by Continent of Ascertainment (N) (by Family)

	North America	Africa	Asia	South/Central America	Europe	Australia
1	c.68_69del(1229)	c.2641G>T(18)	c.68_69del(516)	c.3331_3334del(54)	c.5266dup(2046)	c.68_69del(56)
2	c.5266dup(604)	c.5266dup(7)	c.5266dup(151)	c.5266dup(44)	c.181T>G(761)	c.5266dup(45)
3	c.181T>G(117)	c.1374del(4)	c.390C>A(19)	c.68_69del(25)	c.68_69del(413)	c.4065_4068del(23)
4	c.4327C>T(114)	c.68_69del(4)	c.5496_5506delinsA(17)	c. $5123 \mathrm{C}>\mathrm{A}(23)$	c.4035del(273)	c.3756_3759del(22)
$\stackrel{\Gamma}{i}$) 5	c.4065_4068del(62)	c.3228_3229del(4)	c.5503C>T(13)	c. $211 \mathrm{~A}>\mathrm{G}(14)$	c.1687C>T(219)	c.5503C>T(16)
足 6	c.3756_3759del(61)	c.303T>G(4)	c. $2934 \mathrm{~T}>\mathrm{G}(13)$	c. $181 \mathrm{~T}>\mathrm{G}(8)$	c.4065_4068del(185)	c.4186-?_4357+?dup(15)
\bigcirc	c.213-11T>G(45)	c.4838_4839insC(2)	c.3770_3771del(12)	$\begin{aligned} & \text { c. } 548- \\ & ? .4183+8 ? \mathrm{del}(8) \end{aligned}$	c.3481_3491del(167)	c.4327C>T(13)
8	c. $1687 \mathrm{C}>\mathrm{T}(44)$	c.3268C>T(2)	c.2726dup(12)	c.1687C>T(5)	c.2475del(162)	c.5278-?_5592+?del (11)
9	$\begin{aligned} & \text { c.4186- } \\ & \text { ?4357+?dup(43) } \end{aligned}$	c.1504_1508del(2)	c.470_471del(11)	$\begin{aligned} & \text { c. } 135- \\ & ? .441+? \mathrm{del}(4) \end{aligned}$	c.3756_3759del(155)	c.70_80del(11)
10	c.1175_1214del(42)	c.191G>A(2)	c.922_924delinsT(11)	c.5030_5033del(4)	c.3770_3704del(128)	c.1961del(10)
Families	4,669	69	1,100	271	11,748	581
Unique Mutations	654	30	187	75	1282	173
1	c.5946del(787)	c.7934del(80)	c.5946del(330)	c.2808_2811del(24)	c.6275_6276del(241)	c.5946del(53)
2	c.2808_2811del(99)	c.5946del(6)	c.7480C $>$ T(40)	c.5946del(19)	c.5946del(182)	c.6275_6276del(25)
3	c.8537_8538del(74)	c.1310_1313del(3)	c.3109C>T(25)	c. $2 \mathrm{~T}>\mathrm{G}(5)$	c.2808_2811del(181).	c.7977-1G>C(11)
$\underset{\text { \% }}{ }$	c.1813dup(67)	c.6944_6947del(2)	c.3744_3747del(18)	c.156_157insAlu(4)	771_775del(119)	c.5682C>G(10)
O 5	c.6275_6276del(60)	c.8817_8820del(2)	c. $1399 \mathrm{~A}>\mathrm{T}(16)$	c.6037A>T(4)	c.3847_3848del(100)	c.3847_3848del(10)
\cdots	c.3847_3848del(51)	c.5213_5216del(1)	c.5576_5579del(15)	c.6405_6409del(3)	c.1813dup(97)	c.2808_2811del(10)
7	c.658_659del(50)	c.6535_6536insA(1)	c.2808_2811del(9)	c. $5645 \mathrm{C}>\mathrm{G}(2)$	c.5682C>G(97)	c.755_758del(10)
8	c.9382C>T(41)	c.774_775del(1)	c.262_263del(8)	c.658_659del(2)	c.1310_1313del(92)	c.4478_4481del(9)
9	c.3264dup(40)	c.6393del(1)	c.8537_8538del(7)	c.7180A $>$ T(2)	c. $5645 \mathrm{C}>\mathrm{A}(78)$	c.8297del(9)
10	c.55073dup(37)	c.5042_5043del(1)	c.7878G>A(6)	c.5851_5854del(2)	c.9026_9030del(76)	c. $250 \mathrm{C}>\mathrm{T}(9)$
Families	3,375	170	976	222	10,175	1,047
Unique Mutations	660	27	187	58	1,315	179

[^1]

Figure 1:Proportion of Mutations in the Breast Cancer Cluster Regions (BCCR) and Ovarian Cancer Cluster Region (OCCR) in BRCA1 and BRCA2 by Ethnicity as defined previously(Rebbeck, et al., 2015). Asterisk indicates proportion is significantly different than Caucasian proportion (p-value<0.05).
$373 \times 280 \mathrm{~mm}(72 \times 72$ DPI)

John Wiley \& Sons, Inc.

Figure 2: BRCA1 Mutation Distribution in African American, Asian, and Hispanic. Length of mutation indicator reflects the number of observed mutations. Domains are Zinc/Ring finger (green); BRCT domain (red); BRCT (C terminus) (blue). Mutation type is indicated for each mutation by color: green: missense mutations; black: truncating mutations (nonsense, nonstop, frameshift deletion, frameshift insertion, splice site, in-frame mutations); purple: all other types of mutations.

Figure 3: BRCA2 Mutation Distribution in African American, Asian, and Hispanic CIMBA Sample (per family). Length of mutation indicator reflects the number of observed mutations. Domains are BRCA repeats (green); BRCA helica (red); OB binding domain (blue); tower (yellow) and OB3 binding domain (purple). Mutation type is indicated for each mutation by color: green: missense mutations; black: truncating mutations (nonsense, nonstop, frameshift deletion, frameshift insertion, splice site, in-frame mutations); purple: all other types of mutations.

Gene	HGVS Designation	Mutation Type	Mutation Function	Mutation Effect	Mutation Class	Number of Families Observed
BRCA1	c.(671_4096)ins(300)	ins	unknown	Unknown	3	1
BRCA1	```c.[5243_5277+2788del;5277+2916_5277+2946 delinsGG]```	DL	Unknown	Unknown	3	1
BRCA1	c.1008dup	FS	NMD	PTC	1	1
BRCA1	c.101_105del	FS	NMD / Re-initi		1	1
BRCA1	c. $1012 \mathrm{~A}>$ T	NS	NMD	PTC	1	4
BRCA1	c.1016_1017insC	FS	NMD	PTC	1	1
BRCA1	c.1016del	FS	NMD	PTC	1	9
BRCA1	c.1016dup	FS	NMD	PTC	1	62
BRCA1	c.1017_1018insA	FS	NMD	PTC	1	1
BRCA1	c.1018del	FS	NMD	PTC	1	14
BRCA1	c.102del	FS	NMD / Re-initi		1	1
BRCA1	c.1039_1040del	FS	NMD	PTC	1	3
BRCA1	c.1044_1045insTCAC	FS	NMD	PTC	1	1
BRCA1	c.1044_1047del	FS	NMD	PTC	1	1
BRCA1	c. $1045 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.1049_1050del	FS	NMD	PTC	1	1
BRCA1	c.1054del	FS	NMD	PTC	1	1
BRCA1	c. $1054 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	4
BRCA1	c.1058G>A	NS	NMD	PTC	1	3
BRCA1	c.1059G>A	NS	NMD	PTC	1	2
BRCA1	c.1066C>T	NS	NMD	PTC	1	11
BRCA1	c.1067del	FS	NMD	PTC	1	12
BRCA1	c.1068_1077del	FS	NMD	PTC	1	1
BRCA1	c.1072del	FS	NMD	PTC	1	2
BRCA1	c. $1080 C>A$	NS	NMD	PTC	1	2
BRCA1	c.1082_1092del	FS	NMD	PTC	1	36
BRCA1	c. $1082 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	4
BRCA1	c.1086_1087del	FS	NMD	PTC	1	3
BRCA1	c.1086_1141del	FS	NMD	PTC	1	1
BRCA1	c.1088del	FS	NMD	PTC	1	33
BRCA1	c.1091del	FS	NMD	PTC	1	1
BRCA1	c.1101_1102insC	FS	NMD	PTC	1	1
BRCA1	c.1102G>T	NS	NMD	PTC	1	1
BRCA1	c.1104del	FS	NMD	PTC	1	1
BRCA1	c.1105dup	FS	NMD	PTC	1	2
BRCA1	c.1115G>A	NS	NMD	PTC	1	3
BRCA1	c.1116G>A	NS	NMD	PTC	1	5
BRCA1	c.112_113del	FS	NMD / Re-initi	PTC	1	4
BRCA1	c.1121_1123delinsT	FS	NMD	PTC	1	9
BRCA1	c.1121del	FS	NMD	PTC	1	18
BRCA1	c.1125_1132del	FS	NMD	PTC	1	1
BRCA1	c.1127del	FS	NMD	PTC	1	8
BRCA1	c.1129dup	FS	NMD	PTC	1	1
BRCA1	c.1138C>T	NS	NMD	PTC	1	1
BRCA1	c.1140del	FS	NMD	PTC	1	1
BRCA1	c.1141A>T	NS	NMD	PTC	1	1
BRCA1	c.1148_1149del	FS	NMD	PTC	1	1
BRCA1	c.1150G>T	NS	NMD	PTC	1	2
BRCA1	c.1152dup	FS	NMD	PTC	1	1
BRCA1	c.115T>A	MS	MS	MS	2	3
BRCA1	c. $115 \mathrm{~T} \times \mathrm{C}$	MS	MS	MS	2	9
BRCA1	c. $115 \mathrm{~T}>\mathrm{G}$	MS	MS	MS	2	27
BRCA1	c.1165del	FS	NMD	PTC	1	2
BRCA1	c.116G>A	MS	MS	MS	2	10

BRCA1	c.116G>T	MS	MS	MS	2	1
BRCA1	c.117_118del	FS	NMD / Re-initi		1	11
BRCA1	c.1171G>T	NS	NMD	PTC	1	1
BRCA1	c.1174del	FS	NMD	PTC	1	1
BRCA1	c.1175_1214del	FS	NMD	PTC	1	63
BRCA1	c.1179_1180insT	FS	NMD	PTC	1	1
BRCA1	c.117T>G	MS	MS	MS	2	1
BRCA1	c.1190del	FS	NMD	PTC	1	1
BRCA1	c.1204del	FS	NMD	PTC	1	2
BRCA1	c.1204G>T	NS	NMD	PTC	1	2
BRCA1	c.1209_1210del	FS	NMD	PTC	1	1
BRCA1	c.1209dup	FS	NMD	PTC	1	1
BRCA1	c.1210_1211insCT	FS	NMD	PTC	1	1
BRCA1	c. $1222 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.1227_1230dup	FS	NMD	PTC	1	1
BRCA1	c.122A>G	MS	MS	MS	2	2
BRCA1	c.1232_1233del	FS	NMD	PTC	1	1
BRCA1	c.1241dup	FS	NMD	PTC	1	1
BRCA1	c.124del	FS	NMD / Re-initi		1	18
BRCA1	c.1251_1252delinsA	FS	NMD	PTC	1	1
BRCA1	c.1252dup	FS	NMD	PTC	1	1
BRCA1	c.1252G>T	NS	NMD	PTC	1	5
BRCA1	c.1255del	FS	NMD	PTC	1	1
BRCA1	c.1257del	FS	NMD	PTC	1	1
BRCA1	c. $1261 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.1266T>G	NS	NMD	PTC	1	7
BRCA1	c.1273dup	FS	NMD	PTC	1	2
BRCA1	c.1277C>A	NS	NMD	PTC	1	1
BRCA1	c.1277C>G	NS	NMD	PTC	1	2
BRCA1	c.1287dup	FS	NMD	PTC	1	14
BRCA1	c.1292dup	FS	NMD	PTC	1	26
BRCA1	c.1292T>G	NS	NMD	PTC	1	4
BRCA1	c.1297del	FS	NMD	PTC	1	3
BRCA1	c.130del	FS	NMD / Re-initi		1	1
BRCA1	c. $130 \mathrm{~T}>\mathrm{A}$	MS	MS	MS	2	24
BRCA1	c.1319del	FS	NMD	PTC	1	3
BRCA1	c.131G>A	MS	MS	MS	2	3
BRCA1	c.131G>T	MS	MS	MS	2	14
BRCA1	c.1323_1324del	FS	NMD	PTC	1	1
BRCA1	c. $1326 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	4
BRCA1	c.1327_1345del	FS	NMD	PTC	1	1
BRCA1	c. $132 \mathrm{C}>$ T	S	Unknown	Unknown	3	2
BRCA1	c.133_134+3delinsT	FS	NMD / Re-initi		1	1
BRCA1	c.133_134del	S	NMD / Re-initi	PTC	1	2
BRCA1	c.1333del	FS	NMD	PTC	1	1
BRCA1	c.1333G>T	NS	NMD	PTC	1	3
BRCA1	c.1335_1336del	FS	NMD	PTC	1	2
BRCA1	c.1336del	FS	NMD	PTC	1	1
BRCA1	c.1338dup	FS	unknown	Unknown	3	2
BRCA1	c. $134+1 \mathrm{G}>\mathrm{A}$	S	NMD / Re-initi		1	2
BRCA1	c. $134+1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	1
BRCA1	c. $134+2 \mathrm{del}$	S	Unknown	Unknown	3	1
BRCA1	c. $134+2 \mathrm{~T}>\mathrm{C}$	S	Unknown	Unknown	3	2
BRCA1	c. $134+2 \mathrm{~T}>\mathrm{G}$	S	Unknown	Unknown	3	1
BRCA1	c.134+3_134+6del	S	NMD / Re-initi	PTC	1	3
BRCA1	c. $134+3 \mathrm{~A}>\mathrm{C}$	S	NMD / Re-initi	PTC	1	8
BRCA1	c.1340_1341insG	FS	NMD	PTC	1	4

BRCA1	c.1347del	FS	NMD	PTC	1	1
BRCA1	c.135-?_212+?del	DL	Unknown	Unknown	3	11
BRCA1	c.135-?_301+?del	DL	Unknown	Unknown	3	1
BRCA1	c.135-?_4185+?del	DL	Unknown	Unknown	3	1
BRCA1	c.135-?_441+?del	DL	Unknown	Unknown	3	15
BRCA1	c.135-?_441+?dup	DP	Unknown	Unknown	3	2
BRCA1	c.135-?_4484+?del	DL	Unknown	Unknown	3	3
BRCA1	c.135-?_547+?del	DL	Unknown	Unknown	3	2
BRCA1	c.135-?_547+?dup	DP	Unknown	Unknown	3	1
BRCA1	c.135-?_5592+?del	DL	Unknown	Unknown	3	1
BRCA1	c.135-?_670+?del	DL	Unknown	Unknown	3	3
BRCA1	c.135-1004_441+1609del	DL	Unknown	Unknown	3	1
BRCA1	c.135-1206_441+1607del	DL	NMD / Re-initi		1	1
BRCA1	c. 135-1G>C	S	Unknown	Unknown	3	6
BRCA1	c. 135-1G>T	S	IFD	IFD	2	19
BRCA1	c. $135-2 A>G$	S	Unknown	Unknown	3	2
BRCA1	c. $1352 C>A$	NS	NMD	PTC	1	2
BRCA1	c.135-485_4484+1054del	DL	Unknown	Unknown	3	1
BRCA1	c.1354del	FS	NMD	PTC	1	1
BRCA1	c.1356del	FS	NMD	PTC	1	2
BRCA1	c.1360_1361del	FS	NMD	PTC	1	27
BRCA1	c.1371del	FS	NMD	PTC	1	8
BRCA1	c.1374del	FS	NMD	PTC	1	5
BRCA1	c. $1375 A>T$	NS	NMD	PTC	1	1
BRCA1	c.1378dup	FS	NMD	PTC	1	1
BRCA1	c.1379del	FS	NMD	PTC	1	1
BRCA1	c.1380dup	FS	NMD	PTC	1	40
BRCA1	c.1386del	FS	NMD	PTC	1	1
BRCA1	c.1390del	FS	NMD	PTC	1	1
BRCA1	c.1390dup	FS	NMD	PTC	1	1
BRCA1	c.1392del	FS	NMD	PTC	1	1
BRCA1	c.1393_1394ins(10)	FS	NMD	PTC	1	1
BRCA1	c.139T>A	MS	MS	MS	2	1
BRCA1	c.140_141insT	FS	NMD / Re-initi		1	1
BRCA1	c.1403del	FS	NMD	PTC	1	1
BRCA1	c.1405del	FS	NMD	PTC	1	1
BRCA1	c.1407_1408del	FS	NMD	PTC	1	3
BRCA1	c.140G>A	MS	MS	MS	2	10
BRCA1	c. $140 \mathrm{G}>\mathrm{T}$	MS	MS	MS	2	6
BRCA1	c.1412dup	FS	NMD	PTC	1	1
BRCA1	c.1421T>G	NS	NMD	PTC	1	1
BRCA1	c.1428_1437del	FS	NMD	PTC	1	1
BRCA1	c.1439dup	FS	NMD	PTC	1	1
BRCA1	c.143del	FS	NMD / Re-initi		1	8
BRCA1	c.1440_1441insA	FS	NMD	PTC	1	2
BRCA1	c.1444_1447del	FS	NMD	PTC	1	4
BRCA1	c.1444del	FS	NMD	PTC	1	1
BRCA1	c.144del	FS	NMD / Re-initi	PTC	1	2
BRCA1	c.1450G>T	NS	NMD	PTC	1	2
BRCA1	c.1465G>T	NS	NMD	PTC	1	2
BRCA1	c. $1471 \mathrm{C}>$ T	NS	NMD	PTC	1	9
BRCA1	c.1480C>T	NS	NMD	PTC	1	14
BRCA1	c.1483_1498del	FS	NMD	PTC	1	4
BRCA1	c.1488del	FS	NMD	PTC	1	1
BRCA1	c.1492del	FS	NMD	PTC	1	1
BRCA1	c.1499del	FS	NMD	PTC	1	1
BRCA1	c.1504_1507del	FS	NMD	PTC	1	4

1
2

BRCA1	c.1504_1508del	FS	NMD	PTC	1	52
BRCA1	c.1505_1509del	FS	NMD	PTC	1	12
BRCA1	c.1505T>G	NS	NMD	PTC	1	2
BRCA1	c.1508del	FS	NMD	PTC	1	4
BRCA1	c.150del	FS	NMD	PTC	1	1
BRCA1	c.1510del	FS	NMD	PTC	1	4
BRCA1	c.1511dup	FS	NMD	PTC	1	3
BRCA1	c.1512dup	FS	NMD	PTC	1	3
BRCA1	c.1513_1514insT	FS	NMD	PTC	1	1
BRCA1	c. $1513 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.1523del	FS	NMD	PTC	1	4
BRCA1	c.1529C>A	NS	NMD	PTC	1	1
BRCA1	c.1529C>G	NS	NMD	PTC	1	9
BRCA1	c.1530del	FS	NMD	PTC	1	2
BRCA1	c.1551del	FS	NMD	PTC	1	2
BRCA1	c.1556del	FS	NMD	PTC	1	47
BRCA1	c. 1575 del	FS	NMD	PTC	1	1
BRCA1	c.1576C>T	NS	NMD	PTC	1	3
BRCA1	c.1579_1580del	FS	NMD	PTC	1	1
BRCA1	c. $1600 \mathrm{C}>$ T	NS	NMD	PTC	1	4
BRCA1	c.1601_1602del	FS	NMD	PTC	1	2
BRCA1	c.1601dup	FS	NMD	PTC	1	1
BRCA1	c.1604_1612delins(13)	FS	NMD	PTC	1	1
BRCA1	c. $160 \mathrm{C}>$ T	NS	NMD	PTC	1	4
BRCA1	c.1612C>T	NS	NMD	PTC	1	6
BRCA1	c.1616_1625del	FS	NMD	PTC	1	1
BRCA1	c.1618G>T	NS	NMD	PTC	1	1
BRCA1	c.1621C>T	NS	NMD	PTC	1	25
BRCA1	c.1623dup	FS	NMD	PTC	1	1
BRCA1	c.1630C>T	NS	NMD	PTC	1	4
BRCA1	c.1637_1685delinsGAAAG	FS	NMD	PTC	1	1
BRCA1	c.1642_1643del	FS	NMD	PTC	1	1
BRCA1	c.1642_1650delins(2)	FS	NMD	PTC	1	1
BRCA1	c.1649del	FS	NMD	PTC	1	1
BRCA1	c.1651_1652insC	FS	NMD	PTC	1	4
BRCA1	c.1669del	FS	NMD	PTC	1	3
BRCA1	c.1673_1674del	FS	NMD	PTC	1	2
BRCA1	c. 1674 del	FS	NMD	PTC	1	13
BRCA1	c. $1687 \mathrm{C}>$ T	NS	NMD	PTC	1	273
BRCA1	c.1693G>T	NS	NMD	PTC	1	1
BRCA1	c.1713_1717del	FS	NMD	PTC	1	3
BRCA1	c.1714G>T	NS	NMD	PTC	1	2
BRCA1	c.1716del	FS	NMD	PTC	1	2
BRCA1	c.171del	FS	NMD /	PTC	1	3
BRCA1	c.171dup	FS	NMD	PTC	1	1
BRCA1	c. $1723 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c. $1729 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	3
BRCA1	c.1733_1734del	FS	NMD	PTC	1	1
BRCA1	c. $1747 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.1757del	FS	NMD	PTC	1	12
BRCA1	c.1762dup	FS	NMD	PTC	1	1
BRCA1	c. $176 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA1	c.1772del	FS	NMD	PTC	1	5
BRCA1	c.1779_1785del	FS	NMD	PTC	1	1
BRCA1	c. $178 \mathrm{C}>\mathrm{T}$	NS	NMD /	PTC	1	10
BRCA1	c.1793T>A	NS	NMD	PTC	1	4
BRCA1	c.1793T>A/G	NS	NMD	PTC	1	2

BRCA1	c.1793T>G	NS	NMD	PTC	1	2
BRCA1	c.1795_1798del	FS	NMD	PTC	1	1
BRCA1	c.179dup	FS	NMD	PTC	1	1
BRCA1	c.1803del	FS	NMD	PTC	1	1
BRCA1	c. 1805 del	FS	NMD	PTC	1	2
BRCA1	c. $1808 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c.1812del	FS	NMD	PTC	1	2
BRCA1	c. $1819 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	3
BRCA1	c. $181 \mathrm{~T}>\mathrm{A}$	MS	MS	MS	2	2
BRCA1	c. $181 \mathrm{~T}>$ C	MS	MS	MS	2	7
BRCA1	c. $181 \mathrm{~T}>\mathrm{G}$	MS	MS	MS	2	897
BRCA1	c.182_183del	FS	NMD	PTC	1	1
BRCA1	c.182_183insGCGC	FS	NMD	PTC	1	1
BRCA1	c.1820_1823del	FS	NMD	PTC	1	1
BRCA1	c.1823_1826del	FS	NMD	PTC	1	25
BRCA1	c.1823del	FS	NMD	PTC	1	1
BRCA1	c.182G>A	MS	MS	MS	2	6
BRCA1	c.1831del	FS	NMD	PTC	1	2
BRCA1	c. $1840 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.1844_1845insG	FS	NMD	PTC	1	1
BRCA1	c.1860del	FS	NMD	PTC	1	2
BRCA1	c.1870G>T	NS	NMD	PTC	1	2
BRCA1	c.1874_1877dup	FS	NMD	PTC	1	39
BRCA1	c.1878_1879insTAGT	FS	NMD	PTC	1	1
BRCA1	c.1881_1884del	FS	NMD	PTC	1	10
BRCA1	c.1885del	FS	NMD	PTC	1	1
BRCA1	c.1887_1900dup	FS	NMD	PTC	1	3
BRCA1	c. $188 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	3
BRCA1	c. $188 \mathrm{~T}>\mathrm{A} / \mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c.1892dup	FS	NMD	PTC	1	16
BRCA1	c.1893_1894insT	FS	NMD	PTC	1	5
BRCA1	c.1898del	FS	NMD	PTC	1	1
BRCA1	c.-19-?_5592+?del	DL	Unknown	Unknown	3	10
BRCA1	c.-19-?_80+?del	DL	Unknown	Unknown	3	10
BRCA1	c.-19-?_80+?dup	DP	Unknown	Unknown	3	3
BRCA1	c.19_47del	FS	NMD / Re-initii	PTC	1	4
BRCA1	c.1905_1909del	FS	NMD	PTC	1	1
BRCA1	c.1906del	FS	NMD	PTC	1	1
BRCA1	c.1908_1911del	FS	NMD	PTC	1	1
BRCA1	c.190T>C	MS	MS	MS	2	53
BRCA1	c.190T>G	S	NMD / Re-initi	PTC	1	9
BRCA1	c.1912del	FS	NMD	PTC	1	7
BRCA1	c.1912G>T	NS	NMD	PTC	1	1
BRCA1	c.1916T>A	NS	NMD	PTC	1	13
BRCA1	c.1918C>T	NS	NMD	PTC	1	3
BRCA1	c.191G>A	MS	MS	MS	2	53
BRCA1	c.1921dup	FS	NMD	PTC	1	2
BRCA1	c. $-19-2 A>G$	S	Unknown	Unknown	3	1
BRCA1	c.192T>G	MS	MS	MS	2	1
BRCA1	c.1930del	FS	NMD	PTC	1	1
BRCA1	c.1936del	FS	NMD	PTC	1	1
BRCA1	c.1938_1945del	FS	NMD	PTC	1	1
BRCA1	c.1938_1947del	FS	NMD	PTC	1	3
BRCA1	c.1942G>T	NS	NMD	PTC	1	1
BRCA1	c.1945G>T	NS	NMD	PTC	1	1
BRCA1	c.1949_1950del	FS	NMD	PTC	1	2
BRCA1	c.1949_1952del	FS	NMD	PTC	1	1

BRCA1	c.-19-49_80+248delinsU77841.1:g.2145_2536	DL	No RNA	No RNA	1	1
BRCA1	c.1952del	FS	NMD	PTC	1	1
BRCA1	c.1952dup	FS	NMD	PTC	1	3
BRCA1	c.1953_1956del	FS	NMD	PTC	1	32
BRCA1	c.1953del	FS	NMD	PTC	1	1
BRCA1	c.1953dup	FS	NMD	PTC	1	3
BRCA1	c.1958_1961del	FS	NMD	PTC	1	1
BRCA1	c.195del	FS	NMD / Re-initi		1	1
BRCA1	c.1960A>T	NS	NMD	PTC	1	11
BRCA1	c.1961del	FS	NMD	PTC	1	78
BRCA1	c.1961dup	FS	NMD	PTC	1	29
BRCA1	c.1962dup	FS	unknown	Unknown	3	1
BRCA1	c.1963_1964insG	FS	NMD	PTC	1	1
BRCA1	c. $1965 C>A$	NS	NMD	PTC	1	1
BRCA1	c.1969C>T	NS	NMD	PTC	1	1
BRCA1	c.1972del	FS	NMD	PTC	1	1
BRCA1	c.1978del	FS	NMD	PTC	1	1
BRCA1	c.1996del	FS	NMD	PTC	1	2
BRCA1	c. $1 \mathrm{~A}>\mathrm{G}$	MS/?	Re-initiation	MS	1	17
BRCA1	c.-20+330_80+1609del2534	DL	Unknown	Unknown	3	1
BRCA1	c.-200-?_80+?del36935	DL	No RNA	No RNA	1	1
BRCA1	c.2001dup	FS	NMD	PTC	1	2
BRCA1	c.2012dup	FS	NMD	PTC	1	4
BRCA1	c. 2014A>T	NS	NMD	PTC	1	1
BRCA1	c. $2017 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.2019del	FS	NMD	PTC	1	30
BRCA1	c.202dup	FS	NMD	PTC	1	1
BRCA1	c.2035A>T	NS	NMD	PTC	1	30
BRCA1	c.2037delinsCC	FS	NMD	PTC	1	9
BRCA1	c.2043dup	FS	NMD	PTC	1	9
BRCA1	c.2059C>T	NS	NMD	PTC	1	1
BRCA1	c.2063_2066del	FS	NMD	PTC	1	1
BRCA1	c.2066_2069del	FS	NMD	PTC	1	2
BRCA1	c. $2068 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.2070_2071del	FS	NMD	PTC	1	1
BRCA1	c.2071del	FS	NMD	PTC	1	32
BRCA1	c.2074del	FS	NMD	PTC	1	2
BRCA1	c.2077_2078insTA	FS	NMD	PTC	1	3
BRCA1	c.2077delinsATA	FS	NMD	PTC	1	1
BRCA1	c.2078_2079insTA	FS	NMD	PTC	1	1
BRCA1	c.2080dup	FS	NMD	PTC	1	1
BRCA1	c.2086_2089del	FS	NMD	PTC	1	1
BRCA1	c.2086dup	FS	NMD	PTC	1	1
BRCA1	c.2090dup	FS	NMD	PTC	1	2
BRCA1	c.2105del	FS	NMD	PTC	1	1
BRCA1	c.2105dup	FS	NMD	PTC	1	5
BRCA1	c.2110_2111del	FS	NMD	PTC	1	2
BRCA1	c.2112_2131dup	FS	NMD	PTC	1	1
BRCA1	c. $211 \mathrm{~A}>\mathrm{G}$	S	NMD / Re-initi		1	128
BRCA1	c.211del	FS	NMD / Re-initi		1	9
BRCA1	c. $212+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	33
BRCA1	c. $212+1 \mathrm{G}>\mathrm{C}$	S	Unknown	Unknown	3	1
BRCA1	c. $212+1 \mathrm{G}>\mathrm{T}$	S	NMD / Re-initi	PTC	1	17
BRCA1	c. $212+2 \mathrm{~T}>\mathrm{C}$	S	Unknown	Unknown	3	3
BRCA1	c. $212+3 \mathrm{~A}>\mathrm{G}$	S	NMD / Re-initi	PTC	1	56
BRCA1	c.2125_2126insA	FS	NMD	PTC	1	15
BRCA1	c.2125_2126insAGT	FS	NMD	PTC	1	1

BRCA1	c.2126_2127del	FS	NMD	PTC	1	2
BRCA1	c.2127_2128insGA	FS	NMD	PTC	1	1
BRCA1	c.2127del	FS	NMD	PTC	1	1
BRCA1	c.212G>A	S	NMD / Re-initi P	PTC	1	3
BRCA1	c. $212 \mathrm{G}>\mathrm{C}$	S?	Unknown	Unknown	3	2
BRCA1	c. $212 \mathrm{G}>\mathrm{T}$	S?	Unknown	Unknown	3	1
BRCA1	c.213-?_441+?del	DL	Unknown	Unknown	3	1
BRCA1	c.2131_2132del	FS	NMD	PTC	1	1
BRCA1	c. $213-11 T>G$	S	NMD / Re-initii P	PTC	1	62
BRCA1	c. $213-12 A>G$	S	NMD / Re-initii P	PTC	1	30
BRCA1	c. 213-15A>G	S	NMD	PTC	1	1
BRCA1	c. 213-1G>A	S	Unknown	Unknown	3	3
BRCA1	c. 213-2A>C	S	Unknown	Unknown	3	4
BRCA1	c. $213-2 A>G$	S	NMD / Re-initi P		1	5
BRCA1	c.2135_2136del	FS	NMD	PTC	1	1
BRCA1	c.2138_2139dup	FS	NMD	PTC	1	1
BRCA1	c. $2138 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	4
BRCA1	c. $2138 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	6
BRCA1	c.2142_2144delinsAG	FS	NMD	PTC	1	1
BRCA1	c.2142del	FS	NMD	PTC	1	1
BRCA1	c. $2149 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.2155_2168del	FS	NMD	PTC	1	1
BRCA1	c.2155_2221dup	FS	NMD	PTC	1	1
BRCA1	c. $2155 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.2157_2160del	FS	NMD	PTC	1	1
BRCA1	c.2157dup	FS	NMD	PTC	1	1
BRCA1	c. $2158 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.2161_2162insG	FS	NMD	PTC	1	1
BRCA1	c.2176_2177del	FS	NMD	PTC	1	2
BRCA1	c.2185_2189del	FS	NMD	PTC	1	1
BRCA1	c.2188_2195delinsAAAAAGG	FS	NMD	PTC	1	1
BRCA1	c.2188_2201del	FS	NMD	PTC	1	1
BRCA1	c.2192_2196del	FS	NMD	PTC	1	1
BRCA1	c.2193del	FS	NMD	PTC	1	1
BRCA1	c.2194delinsAA	FS	NMD	PTC	1	2
BRCA1	c. $2194 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.2197_2201del	FS	NMD	PTC	1	55
BRCA1	c. $2197 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.2198dup	FS	NMD	PTC	1	1
BRCA1	c.2199del	FS	NMD	PTC	1	4
BRCA1	c.22_50del	FS	NMD / Re-initi P	PTC	1	1
BRCA1	c.2202dup	FS	NMD	PTC	1	1
BRCA1	c.2205del	FS	NMD	PTC	1	1
BRCA1	c. $220 \mathrm{C}>$ T	NS	NMD / Re-initii P	PTC	1	15
BRCA1	c.2210_2211del	FS	NMD	PTC	1	4
BRCA1	c.2210del	FS	NMD	PTC	1	3
BRCA1	c.2211dup	FS	NMD	PTC	1	1
BRCA1	c.2212_2215del	FS	NMD	PTC	1	2
BRCA1	c.2213_2214dup	FS	NMD	PTC	1	2
BRCA1	c.2214_2218delinsAAA	FS	NMD	PTC	1	2
BRCA1	c.2214dup	FS	NMD	PTC	1	1
BRCA1	c.2215_2216insCT	FS	NMD	PTC	1	1
BRCA1	c. $2215 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	3
BRCA1	c.2216_2217del	FS	NMD	PTC	1	3
BRCA1	c.2217dup	FS	NMD	PTC	1	5
BRCA1	c.2218del	FS	NMD	PTC	1	1
BRCA1	c.2222_2223del	FS	NMD	PTC	1	1

1

BRCA1	c.2223dup	FS	NMD	PTC	1	1
BRCA1	c.2241del	FS	NMD	PTC	1	4
BRCA1	c.2241dup	FS	NMD	PTC	1	1
BRCA1	c.2242_2251del	FS	NMD	PTC	1	2
BRCA1	c.2253_2254del	FS	NMD	PTC	1	3
BRCA1	c. 2255 T>A/G	NS	NMD	PTC	1	1
BRCA1	c.2263del	FS	NMD	PTC	1	1
BRCA1	c. $2263 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	10
BRCA1	c.2269del	FS	NMD	PTC	1	39
BRCA1	c.2273del	FS	NMD	PTC	1	1
BRCA1	c.2283_2284del	FS	NMD	PTC	1	1
BRCA1	c.2292_2310dup	FS	NMD	PTC	1	2
BRCA1	c. $2293 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.2296_2297del	FS	NMD	PTC	1	12
BRCA1	c.2298dup	FS	NMD	PTC	1	1
BRCA1	c.2299del	FS	NMD	PTC	1	1
BRCA1	c.2307_2313del	FS	NMD	PTC	1	1
BRCA1	c. $2309 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	17
BRCA1	c. $2309 C>G$	NS	NMD	PTC	1	7
BRCA1	c.2311_2312insC	FS	NMD	PTC	1	1
BRCA1	c.2314_2315del	FS	NMD	PTC	1	1
BRCA1	c.-232-?_134+?del	DL	No RNA	No RNA	1	11
BRCA1	c.-232-?_-19+?del	DL	No RNA	No RNA	1	2
BRCA1	c.-232-?_4096+?del	DL	No RNA	No RNA	1	1
BRCA1	c.-232-?_4185+?del	DL	No RNA	No RNA	1	10
BRCA1	c.-232-?_4357+?del	DL	No RNA	No RNA	1	6
BRCA1	c.-232-?_4357+?del(;)4987-?_5277+?del	DL	No RNA	No RNA	1	1
BRCA1	c.-232-?_441+?del	DL	No RNA	No RNA	1	12
BRCA1	c.-232-?_4484+?del	DL	No RNA	No RNA	1	3
BRCA1	c.-232-?_5074+?del	DL	No RNA	No RNA	1	25
BRCA1	c.-232-?_5193+?del	DL	No RNA	No RNA	1	1
BRCA1	c.-232-?_5277+?del	DL	No RNA	No RNA	1	1
BRCA1	c.-232-?_5332+?del	DL	No RNA	No RNA	1	1
BRCA1	c.-232-?_5406+?del	DL	No RNA	No RNA	1	1
BRCA1	c.-232-?_5406+?dup	DP	Unknown	Unknown	3	1
BRCA1	c.-232-?_5467+?del	DL	No RNA	No RNA	1	22
BRCA1	c.-232-?_5592+?del	DL	No RNA	No RNA	1	19
BRCA1	c.-232-?_80+?del	DL	No RNA	No RNA	1	103
BRCA1	c.-232-?_80+?dup	DP	Unknown	Unknown	3	1
BRCA1	c. 2322 del	FS	NMD	PTC	1	1
BRCA1	c.-232-31433_80+4171del	DL	No RNA	No RNA	1	4
BRCA1	c. 2329 del	FS	NMD	PTC	1	1
BRCA1	c. 232 del	FS	NMD / Re-initi	PTC	1	1
BRCA1	c. $2331 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c. $2338 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	64
BRCA1	c.2340_2343del	FS	NMD	PTC	1	2
BRCA1	c.2346dup	FS	NMD	PTC	1	1
BRCA1	c.2350_2351del	FS	NMD	PTC	1	3
BRCA1	c. $2354 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	2
BRCA1	c.2355dup	FS	NMD	PTC	1	1
BRCA1	c.2357del	FS	NMD	PTC	1	3
BRCA1	c.2359dup	FS	NMD	PTC	1	47
BRCA1	c.2361del	FS	NMD	PTC	1	1
BRCA1	c.2368_2369del	FS	NMD	PTC	1	1
BRCA1	c.237del	FS	NMD / Re-initi	PTC	1	2
BRCA1	c.2386_2387delinsT	FS	NMD	PTC	1	1
BRCA1	c.2386dup	FS	NMD	PTC	1	1

BRCA1	c.2389_2390del	FS	NMD	PTC	1	5
BRCA1	c. $2389 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	8
BRCA1	c.239_241delinsTT	FS	NMD	PTC	1	1
BRCA1	c.2396del	FS	NMD	PTC	1	1
BRCA1	c.2398_2411del	FS	NMD	PTC	1	1
BRCA1	c. $2403 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	2
BRCA1	c.2405_2406del	FS	NMD	PTC	1	20
BRCA1	c.2406_2409del	FS	NMD	PTC	1	1
BRCA1	c. 2410 C $>$ T	NS	NMD	PTC	1	5
BRCA1	c.2411_2412del	FS	NMD	PTC	1	54
BRCA1	c.2411del	FS	NMD	PTC	1	1
BRCA1	c.2418del	FS	NMD	PTC	1	1
BRCA1	c.2418dup	FS	NMD	PTC	1	1
BRCA1	c. $241 \mathrm{C}>\mathrm{T}$	NS	NMD / Re-initi	PTC	1	5
BRCA1	c. 2424 del	FS	NMD	PTC	1	1
BRCA1	c.2429del	FS	NMD	PTC	1	4
BRCA1	c.2429dup	FS	NMD	PTC	1	1
BRCA1	c.2433del	FS	NMD	PTC	1	15
BRCA1	c. $2434 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c. $2437 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.2442_2443insT	FS	NMD	PTC	1	1
BRCA1	c.2445_2448del	FS	NMD	PTC	1	2
BRCA1	c. 2457 del	FS	NMD	PTC	1	37
BRCA1	c.246del	FS	NMD / Re-initi	PTC	1	4
BRCA1	c.2473del	FS	NMD	PTC	1	1
BRCA1	c.2474dup	FS	NMD	PTC	1	2
BRCA1	c. 2475 del	FS	NMD	PTC	1	206
BRCA1	c. 2476 del	FS	NMD	PTC	1	9
BRCA1	c.2477_2478del	FS	NMD	PTC	1	2
BRCA1	c.2477_2492delinsTG	FS	NMD	PTC	1	1
BRCA1	c.2481del	FS	NMD	PTC	1	1
BRCA1	c.2487_2488insCCCCT	FS	NMD	PTC	1	1
BRCA1	c. 2487 del	FS	NMD	PTC	1	3
BRCA1	c.2487dup	FS	NMD	PTC	1	8
BRCA1	c.2488_2497dup	FS	NMD	PTC	1	1
BRCA1	c.2489_2492del	FS	NMD	PTC	1	1
BRCA1	c.2490_2497dup	FS	NMD	PTC	1	1
BRCA1	c.2501del	FS	NMD	PTC	1	1
BRCA1	c.2504_2505ins(17)	FS	NMD	PTC	1	2
BRCA1	c.2507_2508del	FS	NMD	PTC	1	2
BRCA1	c. $250 \mathrm{G}>\mathrm{T}$	NS	NMD / Re-initi	PTC	1	2
BRCA1	c. 2515 del	FS	NMD	PTC	1	8
BRCA1	c.2517_2518del	FS	NMD	PTC	1	1
BRCA1	c.2518del	FS	NMD	PTC	1	1
BRCA1	c.2524dup	FS	NMD	PTC	1	3
BRCA1	c. $2524 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.2529_2530del	FS	NMD	PTC	1	1
BRCA1	c.2532_2536del	FS	NMD	PTC	1	1
BRCA1	c. $2536 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.2538_2540delinsG	FS	NMD	PTC	1	1
BRCA1	c.2542_2545del	FS	NMD	PTC	1	1
BRCA1	c. $2545 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c. $2551 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.2552_2553del	FS	NMD	PTC	1	1
BRCA1	c.2552_2553dup	FS	NMD	PTC	1	1
BRCA1	c.2558dup	FS	NMD	PTC	1	1
BRCA1	c.2560_2561dup	FS	NMD	PTC	1	12

1

BRCA1	c. $2740 \mathrm{G}>$ T	NS	NMD	PTC	1	1
BRCA1	c.2749dup	FS	NMD	PTC	1	1
BRCA1	c.2750del	FS	NMD	PTC	1	2
BRCA1	c.2751del	FS	NMD	PTC	1	1
BRCA1	c.2753_2755delinsCA	FS	NMD	PTC	1	1
BRCA1	c. $2761 \mathrm{C}>$ T	NS	NMD	PTC	1	3
BRCA1	c.2762del	FS	NMD	PTC	1	1
BRCA1	c.2764_2767del	FS	NMD	PTC	1	2
BRCA1	c.2766del	FS	NMD	PTC	1	2
BRCA1	c.2776_2777del	FS	NMD	PTC	1	1
BRCA1	c.2776_2777insTA	FS	NMD	PTC	1	1
BRCA1	c.2778dup	FS	NMD	PTC	1	1
BRCA1	c.2787_2788insTTATCACTGCAGGCTTT	FS	NMD	PTC	1	1
BRCA1	c. 2800 C>T	NS	NMD	PTC	1	6
BRCA1	c.2805dup	FS	NMD	PTC	1	2
BRCA1	c.2806_2809del	FS	NMD	PTC	1	5
BRCA1	c.2808_2811del	FS	NMD	PTC	1	1
BRCA1	c. $280 \mathrm{C}>$ T	NS	NMD / Re-initi	PTC	1	3
BRCA1	c. 2814 del	FS	NMD	PTC	1	4
BRCA1	c. 2823 del	FS	NMD	PTC	1	1
BRCA1	c.2834_2836delinsC	FS	NMD	PTC	1	23
BRCA1	c.2835dup	FS	NMD	PTC	1	1
BRCA1	c.2836_2837del	FS	NMD	PTC	1	1
BRCA1	c.2840_2841del	FS	NMD	PTC	1	2
BRCA1	c. 2843 del	FS	NMD	PTC	1	1
BRCA1	c.2850_2851insC	FS	NMD	PTC	1	1
BRCA1	c.2850dup	FS	NMD	PTC	1	1
BRCA1	c.2856_2857del	FS	NMD	PTC	1	1
BRCA1	c.2861dup	FS	NMD	PTC	1	1
BRCA1	c. $2864 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	11
BRCA1	c. $2864 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c.2866_2870del	FS	NMD	PTC	1	2
BRCA1	c.2868del	FS	NMD	PTC	1	2
BRCA1	c.2869C>T	NS	NMD	PTC	1	1
BRCA1	c. 2875 del	FS	NMD	PTC	1	1
BRCA1	c.2878_2879del	FS	NMD	PTC	1	1
BRCA1	c.288_292delins(7)	FS	NMD	PTC	1	2
BRCA1	c. 2882 del	FS	NMD	PTC	1	1
BRCA1	c. 2887 del	FS	NMD	PTC	1	3
BRCA1	c.2890G>T	NS	NMD	PTC	1	2
BRCA1	c.2898del	FS	NMD	PTC	1	2
BRCA1	c.290_291del	FS	NMD / Re-initi	PTC	1	2
BRCA1	c.2901_2902dup	FS	NMD	PTC	1	5
BRCA1	c.2903_2904insTC	FS	NMD	PTC	1	1
BRCA1	c.2906_2908delinsCT	FS	NMD	PTC	1	1
BRCA1	c.2906del	FS	NMD	PTC	1	1
BRCA1	c. $2914 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c. 2921 T>A	NS	NMD	PTC	1	11
BRCA1	c. $2923 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	12
BRCA1	c. $2934 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	31
BRCA1	c.2940del	FS	NMD	PTC	1	2
BRCA1	c.2951_2952del	FS	NMD	PTC	1	1
BRCA1	c.2952del	FS	NMD	PTC	1	2
BRCA1	c.2952dup	FS	NMD	PTC	1	2
BRCA1	c.2954_2958delins(3)	FS	NMD	PTC	1	1
BRCA1	c.2959A>T	NS	NMD	PTC	1	1
BRCA1	c.2960dup	FS	NMD	PTC	1	5

2	BRCA1	c. $2963 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	3
3	BRCA1	c.2970del	FS	NMD	PTC	1	1
4	BRCA1	c.2971A>T	NS	NMD	PTC	1	1
5	BRCA1	c.2973_2979del	FS	NMD	PTC	1	2
6	BRCA1	c.2980del	FS	NMD	PTC	1	1
7	BRCA1	c.2981_2982del	FS	NMD	PTC	1	2
8	BRCA1	c.2981del	FS	NMD	PTC	1	1
9	BRCA1	c.2989_2990dup	FS	NMD	PTC	1	21
10	BRCA1	c.2990del	FS	NMD	PTC	1	1
11	BRCA1	c.2995_2996delinsTA	NS	NMD	PTC	1	4
12	BRCA1	c.2999del	FS	NMD	PTC	1	5
13	BRCA1	c. $2 \mathrm{~T}>\mathrm{C}$	MS	Unknown	Unknown	3	1
14	BRCA1	c. $3001 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	3
15	BRCA1	c. 3005 del	FS	NMD	PTC	1	33
16	BRCA1	c.3008_3009del	FS	NMD	PTC	1	11
17	BRCA1	c. $301+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	1
18	BRCA1	c. $301+1 \mathrm{G}>\mathrm{C}$	S	Unknown	Unknown	3	1
19	BRCA1	c.3010G>T	NS	NMD	PTC	1	1
20	BRCA1	c.3013del	FS	NMD	PTC	1	5
21	BRCA1	c.3018_3021del	FS	NMD	PTC	1	69
22	BRCA1	c.302-?_593+?del	DL	NMD / Re-initii		1	1
23	BRCA1	c.3020_3023del	FS	NMD	PTC	1	1
24	BRCA1	c. $3020 \mathrm{C}>\mathrm{A} / \mathrm{G}$	NS	NMD	PTC	1	1
25	BRCA1	c.3020C>G	NS	NMD	PTC	1	1
26	BRCA1	c. 302-1G>A	S	Unknown	Unknown	3	11
27	BRCA1	c.302-1G>T	S	Unknown	Unknown	3	2
28	BRCA1	c. $302-2 A>C$	S	Unknown	Unknown	3	4
29	BRCA1	c. $302-2 A>G$	S	Unknown	Unknown	3	1
30	BRCA1	c.302-2del	S	Unknown	Unknown	3	22
31	BRCA1	c.302-3C>G	S	NMD / Re-initi	PTC	1	4
32	BRCA1	c.3024dup	FS	NMD	PTC	1	1
33	BRCA1	c.3029_3030del	FS	NMD	PTC	1	10
34	BRCA1	c.3037_3038del	FS	NMD	PTC	1	2
35	BRCA1	c. $303 \mathrm{~T}>$ A	NS/S?	Unknown	Unknown	3	2
36	BRCA1	c. $303 \mathrm{~T}>\mathrm{G}$	NS/S?	Unknown	Unknown	3	9
37	BRCA1	c.3044dup	FS	NMD	PTC	1	1
38	BRCA1	c.3048_3052dup	FS	NMD	PTC	1	87
39	BRCA1	c.3049_3050ins(7)	FS	NMD	PTC	1	1
40	BRCA1	c. $3049 \mathrm{G}>$ T	NS	NMD	PTC	1	4
41	BRCA1	c.3052_3053ins(5)	FS	NMD	PTC	1	5
42	BRCA1	c.3053_3054insTGAGA	FS	NMD	PTC	1	19
43	BRCA1	c.3066del	FS	NMD	PTC	1	2
44		c.3075_3076insGGAAAACTTTGAGGAACATTCA					
45	BRCA1	ATGTCACCTGAAAGAGAAATGGGAAATGAGATC	FS	NMD	PTC	1	1
46		ATTCCAAGTACAGTGAGCACA					
47	BRCA1	c.3076_3077ins(76)	FS	NMD	PTC	1	1
48	BRCA1	c.3084_3094del	FS	NMD	PTC	1	4
49	BRCA1	c.3087_3100dup	FS	NMD	PTC	1	1
50	BRCA1	c.3097G>T	NS	NMD	PTC	1	2
51	BRCA1	c.3108dup	FS	NMD	PTC	1	15
52	BRCA1	c.3109_3110insT	FS	NMD	PTC	1	4
53	BRCA1	c.310del	FS	NMD / Re-initii	PTC	1	3
54	BRCA1	c. $3112 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	4
55	BRCA1	c.3114_3117delinsGA	FS	NMD	PTC	1	1
56	BRCA1	c.3115del	FS	NMD	PTC	1	2
57	BRCA1	c.3117_3120del	FS	NMD	PTC	1	1
58	BRCA1	c. $3122 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1

BRCA1	c.3129_3138del	FS	NMD	PTC	1	1
BRCA1	c.3143del	FS	NMD	PTC	1	1
BRCA1	c.3145del	FS	NMD	PTC	1	1
BRCA1	c.3150_3208dup	FS	NMD	PTC	1	1
BRCA1	c. 3155 del	FS	NMD	PTC	1	3
BRCA1	c.3168del	FS	NMD	PTC	1	1
BRCA1	c.3174del	FS	NMD	PTC	1	1
BRCA1	c.3178G>T	NS	NMD	PTC	1	13
BRCA1	c.3182del	FS	NMD	PTC	1	1
BRCA1	c.3193dup	FS	NMD	PTC	1	8
BRCA1	c.3194_3195insG	FS	NMD	PTC	1	1
BRCA1	c.3203_3206del	FS	NMD	PTC	1	1
BRCA1	c.3205del	FS	NMD	PTC	1	2
BRCA1	c.3210dup	FS	NMD	PTC	1	1
BRCA1	c.3211_3212dup	FS	NMD	PTC	1	1
BRCA1	c.3214del	FS	NMD	PTC	1	1
BRCA1	c.3217_3218del	FS	NMD	PTC	1	1
BRCA1	c.321del	FS	NMD /	PTC	1	1
BRCA1	c.3226del	FS	NMD	PTC	1	1
BRCA1	c.3228_3229del	FS	NMD	PTC	1	60
BRCA1	c.3239T>A	NS	NMD	PTC	1	5
BRCA1	c.3243_3288dup	FS	NMD	PTC	1	2
BRCA1	c.3253dup	FS	NMD	PTC	1	6
BRCA1	c.3254_3255dup	FS	NMD	PTC	1	6
BRCA1	c.3256_3257insGA	FS	NMD	PTC	1	8
BRCA1	c. $3257 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	2
BRCA1	c.3257T>G	NS	NMD	PTC	1	19
BRCA1	c.3258del	FS	NMD	PTC	1	1
BRCA1	c.3262_3277del	FS	NMD	PTC	1	1
BRCA1	c.3262del	FS	NMD	PTC	1	1
BRCA1	c.3266del	FS	NMD	PTC	1	1
BRCA1	c. $3266 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA1	c.3268C>T	NS	NMD	PTC	1	3
BRCA1	c.3279del	FS	NMD	PTC	1	1
BRCA1	c. $3282 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA1	c. 3285 del	FS	NMD	PTC	1	16
BRCA1	c. $3286 \mathrm{C}>$ T	NS	NMD	PTC	1	2
BRCA1	c.3288_3289del	FS	NMD	PTC	1	2
BRCA1	c.3289dup	FS	NMD	PTC	1	1
BRCA1	c.3296del	FS	NMD	PTC	1	9
BRCA1	c.329del	FS	NMD /		1	4
BRCA1	c.329dup	FS	NMD /		1	18
BRCA1	c.330_331insA	FS	NMD	PTC	1	1
BRCA1	c.3308_3309insC	FS	NMD	PTC	1	1
BRCA1	c.3309T>A	FS	NMD	PTC	1	1
BRCA1	c.3314del	FS	NMD	PTC	1	1
BRCA1	c.3319G>T	NS	NMD	PTC	1	85
BRCA1	c.331del	FS	NMD	PTC	1	1
BRCA1	c.3326_3329del	FS	NMD	PTC	1	5
BRCA1	c.3329_3330del	FS	NMD	PTC	1	1
BRCA1	c.3329del	FS	NMD	PTC	1	2
BRCA1	c.3329dup	FS	NMD	PTC	1	2
BRCA1	c.3330del	FS	NMD	PTC	1	1
BRCA1	c.3331_3334del	FS	NMD	PTC	1	189
BRCA1	c.3331_3335del	FS	NMD	PTC	1	2
BRCA1	c. $3331 \mathrm{C}>$ T	NS	NMD	PTC	1	3
BRCA1	c.3331del	FS	NMD	PTC	1	3

1

BRCA1	c.3333_3336del	FS	NMD	PTC	1	2
BRCA1	c.3333del	FS	NMD	PTC	1	6
BRCA1	c.3339_3341del	FS	NMD	PTC	1	3
BRCA1	c.3339T>G	NS	NMD	PTC	1	2
BRCA1	c. $3340 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.3342_3345del	FS	NMD	PTC	1	5
BRCA1	c.3343del	FS	NMD	PTC	1	2
BRCA1	c.3351dup	FS	NMD	PTC	1	3
BRCA1	c.3352C>T	NS	NMD	PTC	1	1
BRCA1	c.3354_3355del	FS	NMD	PTC	1	2
BRCA1	c.3358_3359del	FS	NMD	PTC	1	8
BRCA1	c.3359_3360del	FS	NMD	PTC	1	7
BRCA1	c.335del	FS	NMD	PTC	1	1
BRCA1	c.3360dup	FS	NMD	PTC	1	1
BRCA1	c.3362del	FS	NMD	PTC	1	1
BRCA1	c.3365_3366del	FS	NMD	PTC	1	1
BRCA1	c.3373dup	FS	NMD	PTC	1	2
BRCA1	c.3375_3376del	FS	NMD	PTC	1	3
BRCA1	c.3377del	FS	NMD	PTC	1	1
BRCA1	c.3381T>G	NS	NMD	PTC	1	1
BRCA1	c.3384_3391del	FS	NMD	PTC	1	1
BRCA1	c.3388_3408delins(16)	FS	NMD	PTC	1	1
BRCA1	c.3388del	FS	NMD	PTC	1	1
BRCA1	c. $3389 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c.3390del	FS	NMD	PTC	1	3
BRCA1	c.3395del	FS	NMD	PTC	1	1
BRCA1	c.3396del	FS	NMD	PTC	1	1
BRCA1	c.3397_3398del	FS	NMD	PTC	1	1
BRCA1	c.3398T>G	NS	NMD	PTC	1	3
BRCA1	c. $3400 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	48
BRCA1	c. $3403 C>T$	NS	NMD	PTC	1	11
BRCA1	c. $3412 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.3413dup	FS	NMD	PTC	1	2
BRCA1	c.3416_3427delinsC	FS	NMD	PTC	1	1
BRCA1	c.3417del	FS	NMD	PTC	1	1
BRCA1	c.3428delinsTA	FS	NMD	PTC	1	1
BRCA1	c.342del	FS	NMD	PTC	1	1
BRCA1	c. $3430 \mathrm{C}>$ T	NS	NMD	PTC	1	1
BRCA1	c.3442del	FS	NMD	PTC	1	4
BRCA1	c. $3461 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c.3462dup	FS	NMD	PTC	1	1
BRCA1	c.3477_3479delinsC	FS	NMD	PTC	1	5
BRCA1	c.3477_3480del	FS	NMD	PTC	1	29
BRCA1	c.3478_3479del	FS	NMD	PTC	1	1
BRCA1	c.3479_3483del	FS	NMD	PTC	1	1
BRCA1	c.3481_3491del	FS	NMD	PTC	1	203
BRCA1	c.3482_3492del	FS	NMD	PTC	1	1
BRCA1	c.3485_3488del	FS	NMD	PTC	1	2
BRCA1	c.3485_3491del	FS	NMD	PTC	1	1
BRCA1	c.3485del	FS	NMD	PTC	1	77
BRCA1	c.3489_3499del	FS	NMD	PTC	1	1
BRCA1	c.3494_3495del	FS	NMD	PTC	1	1
BRCA1	c.3498del	FS	NMD	PTC	1	1
BRCA1	c. $34 \mathrm{C}>\mathrm{T}$	NS	NMD /	PTC	1	18
BRCA1	c.3504_3505insA	FS	NMD	PTC	1	1
BRCA1	c. $3511 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.3512del	FS	NMD	PTC	1	1

1
2

BRCA1	c.3710del	FS	NMD	PTC	1	48
BRCA1	c.3718C>T	NS	NMD	PTC	1	17
BRCA1	c.3729_3730insGACACTTGTTATTTGGTAAAGTA AACAATATACCTTCTCAGTCTACTAGG	FS	NMD	PTC	1	3
BRCA1	c.372del	FS	NMD	PTC	1	1
BRCA1	c.3731_3738del	FS	NMD	PTC	1	1
BRCA1	c.3731_3743del	FS	NMD	PTC	1	1
BRCA1	c.3736del	FS	NMD	PTC	1	1
BRCA1	c. $3748 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	79
BRCA1	c.375_376insT	FS	NMD	PTC	1	1
BRCA1	c.3750del	FS	NMD	PTC	1	2
BRCA1	c.3753T>A	NS	NMD	PTC	1	2
BRCA1	c.3756_3757del	FS	NMD	PTC	1	3
BRCA1	c.3756_3759del	FS	NMD	PTC	1	240
BRCA1	c.3756_3760del	FS	NMD	PTC	1	1
BRCA1	c.3759_3760del	FS	NMD	PTC	1	6
BRCA1	c.3759dup	FS	NMD	PTC	1	6
BRCA1	c.3760_3761insT	FS	NMD	PTC	1	3
BRCA1	c.3761_3762insTT	FS	NMD	PTC	1	2
BRCA1	c.3762_3763del	FS	NMD	PTC	1	1
BRCA1	c.3764dup	FS	NMD	PTC	1	5
BRCA1	c. 3765 del	FS	NMD	PTC	1	1
BRCA1	c.3767_3768del	FS	NMD	PTC	1	6
BRCA1	c.3770_3771del	FS	NMD	PTC	1	79
BRCA1	c.3774_3775del	FS	NMD	PTC	1	1
BRCA1	c.3779del	FS	NMD	PTC	1	5
BRCA1	c.3782del	FS	NMD	PTC	1	1
BRCA1	c.3785C>A	NS	NMD	PTC	1	2
BRCA1	c.3794del	FS	NMD	PTC	1	1
BRCA1	c.3810C>A	NS	NMD	PTC	1	1
BRCA1	c.3814_3815insT	FS	NMD	PTC	1	1
BRCA1	c.3817C>T	NS	NMD	PTC	1	10
BRCA1	c.3820del	FS	NMD	PTC	1	2
BRCA1	c.3820dup	FS	NMD	PTC	1	8
BRCA1	c.3821dup	FS	NMD	PTC	1	1
BRCA1	c.3837_3840del	FS	NMD	PTC	1	1
BRCA1	c.3839_3843del	FS	NMD	PTC	1	1
BRCA1	c.3839_3843delinsAGGC	FS	NMD	PTC	1	48
BRCA1	c.3840_3850del	FS	NMD	PTC	1	1
BRCA1	c. $3841 \mathrm{C}>$ T	NS	NMD	PTC	1	38
BRCA1	c.3844del	FS	NMD	PTC	1	1
BRCA1	c.385_386delinsC	FS	NMD	PTC	1	1
BRCA1	c.3851_3852dup	FS	NMD	PTC	1	1
BRCA1	c.3856del	FS	NMD	PTC	1	1
BRCA1	c.3858_3861del	FS	NMD	PTC	1	4
BRCA1	c. $3862 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	3
BRCA1	c. $3868 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.3869_3870del	FS	NMD	PTC	1	8
BRCA1	c. 3874 del	FS	NMD	PTC	1	18
BRCA1	c.3885del	FS	NMD	PTC	1	1
BRCA1	c.3893C>A	NS	NMD	PTC	1	3
BRCA1	c.3895C>T	NS	NMD	PTC	1	1
BRCA1	c.3901_3902del	FS	NMD	PTC	1	7
BRCA1	c.3904G>T	NS	NMD	PTC	1	9
BRCA1	c.3907_3908delinsGGA	FS	NMD	PTC	1	2
BRCA1	c.3908_3909dup	FS	NMD	PTC	1	1
BRCA1	c. $390 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	23

BRCA1	c. $390 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c.3910del	FS	NMD	PTC	1	4
BRCA1	c.3914del	FS	NMD	PTC	1	3
BRCA1	c.3916_3917del	FS	NMD	PTC	1	20
BRCA1	c.3917del	FS	NMD	PTC	1	1
BRCA1	c.391A>T	NS	NMD	PTC	1	1
BRCA1	c.3921_4357+1203del	DL	Unknown	Unknown	3	1
BRCA1	c.3926del	FS	NMD	PTC	1	2
BRCA1	c.3928dup	FS	NMD	PTC	1	1
BRCA1	c.3931_3934del	FS	NMD	PTC	1	4
BRCA1	c.3937C>T	NS	NMD	PTC	1	20
BRCA1	c.3947_3950del	FS	NMD	PTC	1	3
BRCA1	c.3952_3955del	FS	NMD	PTC	1	1
BRCA1	c.3959del	FS	NMD	PTC	1	1
BRCA1	c.3961del	FS	NMD	PTC	1	1
BRCA1	c.3967C>T	NS	NMD	PTC	1	8
BRCA1	c.3967del	FS	NMD	PTC	1	2
BRCA1	c.3968_3971del	FS	NMD	PTC	1	1
BRCA1	c.3972_3974delinsAA	FS	NMD	PTC	1	1
BRCA1	c.3973del	FS	NMD	PTC	1	1
BRCA1	c.3981del	FS	NMD	PTC	1	1
BRCA1	c.3985_3987delinsTTTC	FS	NMD	PTC	1	1
BRCA1	c.3990_3993del	FS	NMD	PTC	1	1
BRCA1	c.3991C>T	NS	NMD	PTC	1	1
BRCA1	c.3995_4001del	FS	NMD	PTC	1	1
BRCA1	c.3G>A	$\mathrm{MS} /$?	Re-initiation	MS	1	3
BRCA1	c.3G>C	MS/?	Re-initiation	MS	1	1
BRCA1	c.3G>T	MS/?	Re-initiation	MS	1	1
BRCA1	c.4001del	FS	NMD	PTC	1	5
BRCA1	c.4002_4005del	FS	NMD	PTC	1	1
BRCA1	c.4013del	FS	NMD	PTC	1	1
BRCA1	c.4016_4017insTT	FS	NMD	PTC	1	1
BRCA1	c.4033G>T	NS	NMD	PTC	1	1
BRCA1	c.4035del	FS	NMD	PTC	1	302
BRCA1	c.4038_4041del	FS	NMD	PTC	1	2
BRCA1	c.4039dup	FS	NMD	PTC	1	1
BRCA1	c.4041_4042del	FS	NMD	PTC	1	11
BRCA1	c.4042G>T	NS	NMD	PTC	1	1
BRCA1	c.4043del	FS	NMD	PTC	1	1
BRCA1	c. $4052 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA1	c. $4054 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.4057_4061del	FS	NMD	PTC	1	2
BRCA1	c.4062_4066del	FS	NMD	PTC	1	1
BRCA1	c.4062_4068del	FS	NMD	PTC	1	2
BRCA1	c.4065_4068del	FS	NMD	PTC	1	275
BRCA1	c.4066_4069del	FS	NMD	PTC	1	5
BRCA1	c. $4066 \mathrm{C}>$ T	NS	NMD	PTC	1	1
BRCA1	c.4066del	FS	NMD	PTC	1	1
BRCA1	c.4069G>T	NS	NMD	PTC	1	1
BRCA1	c.406del	FS	NMD	PTC	1	1
BRCA1	c.406dup	FS	NMD	PTC	1	5
BRCA1	c.4071del	FS	NMD	PTC	1	5
BRCA1	c.4072G>T	NS	NMD	PTC	1	1
BRCA1	c.4074_4090del	FS	NMD	PTC	1	1
BRCA1	c. $4075 \mathrm{C}>$ T	NS	NMD	PTC	1	1
BRCA1	c.4079del	FS	NMD	PTC	1	1
BRCA1	c.407del	FS	NMD	PTC	1	2

1

BRCA1	c. $4088 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	3
BRCA1	c.4092_4093del	FS	NMD	PTC	1	1
BRCA1	c. $4094 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c. $4096+1 \mathrm{G}>\mathrm{A}$	S	IFD	IFD	2	16
BRCA1	c.4097-2A>G	S	Unknown	Unknown	3	6
BRCA1	c.4097-78_4185+69del	DL	NMD	PTC	1	3
BRCA1	c.40del	FS	NMD	PTC	1	1
BRCA1	c.4107_4108insATCT	FS	NMD	PTC	1	1
BRCA1	c.4107_4110dup	FS	NMD	PTC	1	5
BRCA1	c.411_414del	FS	NMD	PTC	1	1
BRCA1	c.4113del	FS	NMD	PTC	1	3
BRCA1	c.4116del	FS	NMD	PTC	1	1
BRCA1	c. $4117 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	15
BRCA1	c.411del	FS	NMD	PTC	1	2
BRCA1	c.4120_4121del	FS	NMD	PTC	1	4
BRCA1	c.4122_4123del	FS	NMD	PTC	1	1
BRCA1	c.4123G>T	NS	NMD	PTC	1	2
BRCA1	c.4126_4129del	FS	NMD	PTC	1	1
BRCA1	c.4127del	FS	NMD	PTC	1	2
BRCA1	c.4129del	FS	NMD	PTC	1	1
BRCA1	c.4136_4137del	FS	NMD	PTC	1	2
BRCA1	c.4137_4138del	FS	NMD	PTC	1	1
BRCA1	c.4139_4140del	FS	NMD	PTC	1	1
BRCA1	c.4146_4155dup	FS	NMD	PTC	1	6
BRCA1	c. $4148 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	4
BRCA1	c.4158_4162del	FS	NMD	PTC	1	5
BRCA1	c. $415 \mathrm{C}>$ T	NS	NMD	PTC	1	5
BRCA1	c.4161_4162del	FS	NMD	PTC	1	10
BRCA1	c.4162_4163del	FS	NMD	PTC	1	1
BRCA1	c.4165_4166del	FS	NMD	PTC	1	32
BRCA1	c.4165_4166dup	FS	NMD	PTC	1	1
BRCA1	c.4167_4168del	FS	NMD	PTC	1	2
BRCA1	c.416dup	FS	NMD	PTC	1	1
BRCA1	c.4175del	FS	NMD	PTC	1	1
BRCA1	c. $4183 \mathrm{C}>$ T	NS	NMD	PTC	1	88
BRCA1	c.4185_4185+3del	S	Unknown	Unknown	3	3
BRCA1	c. $4185+1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	4
BRCA1	c. $4185+2$ _4185+22delinsA	S	Unknown	Unknown	3	10
BRCA1	c. $4185+2 \mathrm{~T}>\mathrm{C}$	S	Unknown	Unknown	3	1
BRCA1	c. $4185 \mathrm{G}>\mathrm{A}$	S	NMD	PTC	1	12
BRCA1	c.4186-?_4357+?del	DL	Unknown	Unknown	3	6
BRCA1	c.4186-?_4357+?dup	DP	Unknown	Unknown	3	179
BRCA1	c.4186-?_4484+?del	DL	Unknown	Unknown	3	1
BRCA1	c.4186-?_4675+?del	DL	Unknown	Unknown	3	21
BRCA1	c.4186-?_5193+?del	DL	Unknown	Unknown	3	4
BRCA1	c.4186-?_5277+?del	DL	Unknown	Unknown	3	1
BRCA1	c.4186-1643_4357+2020del	DL	NMD	PTC	1	41
BRCA1	c.4186-1783_4358-1665dup	DP	NMD	PTC	1	7
BRCA1	c.4186-1787_4357+4122dup	DP	NMD	PTC	1	51
BRCA1	c.4186-832_4357+1955del	DL	NMD	PTC	1	1
BRCA1	c.4186C>T	NS/S?	Unknown	Unknown	3	7
BRCA1	c.418dup	FS	NMD	PTC	1	1
BRCA1	c.4195_4196del	FS	NMD	PTC	1	4
BRCA1	c.4197del	FS	NMD	PTC	1	1
BRCA1	c.4201C>T	NS	NMD	PTC	1	7
BRCA1	c.4205del	FS	NMD	PTC	1	1
BRCA1	c.4206_4207del	FS	NMD	PTC	1	1

BRCA1	c.4210del	FS	NMD	PTC	1	4
BRCA1	c.4214del	FS	NMD	PTC	1	1
BRCA1	c. $4216 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.4218del	FS	NMD	PTC	1	1
BRCA1	c. $4222 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	25
BRCA1	c. $4225 C>T$	NS	NMD	PTC	1	2
BRCA1	c. $4228 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.4239del	FS	NMD	PTC	1	4
BRCA1	c.4240dup	FS	NMD	PTC	1	1
BRCA1	c.4243del	FS	NMD	PTC	1	5
BRCA1	c.4251_4252del	FS	NMD	PTC	1	12
BRCA1	c. $4258 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	4
BRCA1	c.4266dup	FS	NMD	PTC	1	1
BRCA1	c. $42700>T$	NS	NMD	PTC	1	1
BRCA1	c. $427 \mathrm{G} \times \mathrm{T}$	NS	NMD	PTC	1	94
BRCA1	c.4281_4282insTAAGCTGTGTTAGAACAGCATG GGAGCCAGCCTTCTAAC	FS	NMD	PTC	1	5
BRCA1	c.4284_4285delinsG	FS	NMD	PTC	1	1
BRCA1	c.4285dup	FS	NMD	PTC	1	2
BRCA1	c.4289dup	FS	NMD	PTC	1	1
BRCA1	c.4290_4296del	FS	NMD	PTC	1	1
BRCA1	c.4300dup	FS	NMD	PTC	1	2
BRCA1	c.4309del	FS	NMD	PTC	1	1
BRCA1	c.431del	FS	NMD	PTC	1	1
BRCA1	c.431dup	FS	NMD	PTC	1	3
BRCA1	c.4321dup	FS	NMD	PTC	1	3
BRCA1	c. $4327 \mathrm{C}>$ T	NS	NMD	PTC	1	252
BRCA1	c.4331_4332del	FS	NMD	PTC	1	1
BRCA1	c.4335_4338dup	FS	NMD	PTC	1	1
BRCA1	c.4339C>T	NS	NMD	PTC	1	2
BRCA1	c.4342dup	FS	NMD	PTC		1
BRCA1	c. $4349 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA1	c. $4354 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.4357+1_4357+10del	S	Unknown	Unknown	3	2
BRCA1	c.4357+1514_4484+547del	DL	NMD	PTC	1	1
BRCA1	c.4357+1del	S	Unknown	Unknown	3	2
BRCA1	c. $4357+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	16
BRCA1	c. $4357+1 G>C$	S	Unknown	Unknown	3	1
BRCA1	c. $4357+1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	1
BRCA1	c. $4357+6 T>C$	S	NMD	PTC	1	12
BRCA1	c.4358-?_4484+?del	DL	Unknown	Unknown	3	3
BRCA1	c.4358-?_4484+?dup	DP	Unknown	Unknown	3	1
BRCA1	c.4358-?_4986+?del	DL	Unknown	Unknown	3	3
BRCA1	c.4358-?_4986+?dup	DP	Unknown	Unknown	3	1
BRCA1	c.4358-?_5074+?del	DL	Unknown	Unknown	3	3
BRCA1	c.4358-?_5193+?del	DL	Unknown	Unknown	3	2
BRCA1	c.4358-?_5277+?del	DL	Unknown	Unknown	3	31
BRCA1	c.4358-1729_4986+736dup	DP	NMD	PTC	1	3
BRCA1	c. $4358-3 A>G$	S	NMD	PTC	1	1
BRCA1	c. $4364 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c. $4372 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	9
BRCA1	c.4373_4389del	FS	NMD	PTC	1	1
BRCA1	c. $4375 A>T$	NS	NMD	PTC	1	1
BRCA1	c.438_439ins(25)	FS	NMD	PTC	1	1
BRCA1	c.4389C>A	NS	NMD	PTC	1	6
BRCA1	c.4391_4393delinsTT	FS	NMD	PTC	1	15
BRCA1	c.4391del	FS	NMD	PTC	1	15

BRCA1	c.4393del	FS	NMD	PTC	1	1
BRCA1	c.4397_4398insA	FS	NMD	PTC	1	1
BRCA1	c.4399C>T	NS	NMD	PTC	1	1
BRCA1	c.4401del	FS	NMD	PTC	1	1
BRCA1	c. $4408 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	3
BRCA1	c. $441+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	1
BRCA1	c. $441+2 \mathrm{~T}>\mathrm{G}$	S	NMD	PTC	1	1
BRCA1	c.4416_4417delinsG	FS	NMD	PTC	1	9
BRCA1	c.4417del	FS	NMD	PTC	1	1
BRCA1	c.442-?_4185+?del	DL	Unknown	Unknown	3	2
BRCA1	c.442-?_4357+?del	DL	Unknown	Unknown	3	36
BRCA1	c.442-?_5277+?dup	DP	NMD	PTC	1	1
BRCA1	c.442-?_5467+?del	DL	Unknown	Unknown	3	1
BRCA1	c.442-?_547+?del	DL	Unknown	Unknown	3	23
BRCA1	c.442-?_547+?dup	DP	Unknown	Unknown	3	2
BRCA1	c.442-?_5592+?del	DL	Unknown	Unknown	3	1
BRCA1	c.442-?_593+?del	DL	Unknown	Unknown	3	6
BRCA1	c.442-?_670+?del	DL	Unknown	Unknown	3	1
BRCA1	c.442-1129_547+223del	DL	Unknown	Unknown	3	2
BRCA1	c.442-1235_976del	DL	Unknown	Unknown	3	1
BRCA1	c.442-1783_4358-1285del	DL	NMD	PTC	1	3
BRCA1	c.442-7T>A	S	NMD	PTC	1	1
BRCA1	c.442-822_593+506del	DL	NMD	PTC	1	1
BRCA1	c.442-952_547dup	DP	Unknown	Unknown	3	1
BRCA1	c.4453_4474del	FS	NMD	PTC	1	1
BRCA1	c.4456del	FS	NMD	PTC	1	2
BRCA1	c. 4457 del	FS	NMD	PTC	1	1
BRCA1	c. $4480 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.4482_4483del	FS	NMD	PTC	1	2
BRCA1	c. $4484+1 \mathrm{del}$	S	Unknown	Unknown	3	1
BRCA1	c. $4484+1 \mathrm{G}>\mathrm{A}$	FS	NMD	PTC	1	8
BRCA1	c. $4484+1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	1
BRCA1	c. $4484+5 \mathrm{G}>\mathrm{C}$	FS/S?	NMD	PTC	1	2
BRCA1	c. $4484 \mathrm{G}>\mathrm{A}$	S	NMD	PTC	1	2
BRCA1	c. $4484 \mathrm{G}>\mathrm{C}$	S?	Unknown	Unknown	3	2
BRCA1	c.4484G>T	S	NMD	PTC	1	54
BRCA1	c.4485-?_4675+?del	DL	Unknown	Unknown	3	5
BRCA1	c.4485-?_4675+?dup	DP	Unknown	Unknown	3	2
BRCA1	c.4485-?_4986+?del	DL	Unknown	Unknown	3	11
BRCA1	c.4485-?_5074+?del	DL	Unknown	Unknown	3	6
BRCA1	c.4485-1118_5277+4813del	DL	NMD	PTC	1	1
BRCA1	c. $4485-1 \mathrm{G} \times \mathrm{A}$	S	Unknown	Unknown	3	3
BRCA1	c. $4485-1 \mathrm{G}>\mathrm{C}$	S	Unknown	Unknown	3	2
BRCA1	c. $4485-1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	1
BRCA1	c. $4485-2 A>G$	S	Unknown	Unknown	3	5
BRCA1	c.4493del	FS	NMD	PTC	1	1
BRCA1	c. $4503 C>A$	NS	NMD	PTC	1	1
BRCA1	c. $4508 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	10
BRCA1	c.4516del	FS	NMD	PTC	1	1
BRCA1	c. $4524 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	28
BRCA1	c.4527C>A	NS	NMD	PTC	1	1
BRCA1	c.4533_4534del	FS	NMD	PTC	1	11
BRCA1	c. $4566 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA1	c. $4566 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c.4569_4570insCC	FS	NMD	PTC	1	1
BRCA1	c.4569_4572del	FS	NMD	PTC	1	1
BRCA1	c.4570del	FS	NMD	PTC	1	1

BRCA1	c.4573C>T	NS	NMD	PTC	1	1
BRCA1	c.4574_4575del	FS	NMD	PTC	1	21
BRCA1	c.4575_4585del	FS	NMD	PTC	1	7
BRCA1	c. $4576 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.4591del	FS	NMD	PTC	1	1
BRCA1	c.4593dup	FS	NMD	PTC	1	1
BRCA1	c. $4603 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c. $4609 \mathrm{C}>$ T	NS	NMD	PTC	1	4
BRCA1	c.4611_4612insG	FS	NMD	PTC	1	1
BRCA1	c. $4612 \mathrm{C}>$ T	NS	NMD	PTC	1	4
BRCA1	c.4618_4621delinsAAA	FS	NMD	PTC	1	2
BRCA1	c.4622_4623del	FS	NMD	PTC	1	1
BRCA1	c.4625_4626del	FS	NMD	PTC	1	5
BRCA1	c. $4656 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA1	c.4668dup	FS	NMD	PTC	1	1
BRCA1	c.4674del	FS/S?	Unknown	Unknown	3	1
BRCA1	c. $4675+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	31
BRCA1	c. $4675+1 G>C$	S	Unknown	Unknown	3	1
BRCA1	c. $4675+2 \mathrm{~T}>\mathrm{A}$	S	Unknown	Unknown	3	2
BRCA1	c. $4675+2 T>C$	S	Unknown	Unknown	3	1
BRCA1	c. $4675 \mathrm{G}>\mathrm{A}$	MS	MS	MS	2	5
BRCA1	c.4675G>C	MS	MS	MS	2	1
BRCA1	c.4676-?_4986+?del	DL	Unknown	Unknown	3	4
BRCA1	c.4676-?_5074+?del	DL	IFD	IFD	2	14
BRCA1	c.4676-?_5193+?del	DL	Unknown	Unknown	3	1
BRCA1	c.4676-?_5467+?del	DL	Unknown	Unknown	3	2
BRCA1	c.4676-1420_4986+900del	DL	NMD	PTC	1	3
BRCA1	c. $4676-1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	4
BRCA1	c.4676-1G>T	S	Unknown	Unknown	3	1
BRCA1	c. $4678 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.4681del	FS	NMD	PTC	1	3
BRCA1	c.4684_4685del	FS	NMD	PTC	1	3
BRCA1	c.4688_4694delinsG	FS	unknown	Unknown	3	1
BRCA1	c.4688dup	FS	NMD	PTC	1	1
BRCA1	c. $4689 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	99
BRCA1	c.4695dup	FS	NMD	PTC	1	1
BRCA1	c.4696_4697insA	FS	NMD	PTC	1	1
BRCA1	c.4699_4708del	FS	NMD	PTC	1	1
BRCA1	c.470_471del	FS	NMD	PTC	1	31
BRCA1	c.4700_4710delinsA	FS	NMD	PTC	1	1
BRCA1	c.4712_4716del	FS	NMD	PTC	1	1
BRCA1	c. 4724 del	FS	NMD	PTC	1	2
BRCA1	c. $4741 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.4743del	FS	NMD	PTC	1	2
BRCA1	c.4754_4755del	FS	NMD	PTC	1	11
BRCA1	c.4758_4759insA	FS	NMD	PTC	1	1
BRCA1	c.4784del	FS	NMD	PTC	1	1
BRCA1	c. $4801 \mathrm{~A}>T$	NS	NMD	PTC	1	1
BRCA1	c.4806del	FS	NMD	PTC	1	1
BRCA1	c. $4810 \mathrm{C}>$ T	NS	NMD	PTC	1	11
BRCA1	c. $4834 C>T$	NS	NMD	PTC	1	1
BRCA1	c.4834del	FS	NMD	PTC	1	1
BRCA1	c.4837del	FS	NMD	PTC	1	1
BRCA1	c.4838_4839insC	FS	NMD	PTC	1	2
BRCA1	c.4843dup	FS	NMD	PTC	1	2
BRCA1	c.485_486del	FS	NMD	PTC	1	2
BRCA1	c. $4868 \mathrm{C}>\mathrm{G}$	MS	MS	MS	2	4

BRCA1	c.4873_4885del	FS	NMD	PTC	1	1
BRCA1	c. $4875 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA1	c.4877del	FS	NMD	PTC	1	1
BRCA1	c.4878dup	FS	NMD	PTC	1	1
BRCA1	c.4885dup	FS	NMD	PTC	1	1
BRCA1	c.4887_4893del	FS	NMD	PTC	1	1
BRCA1	c.4891del	FS	NMD	PTC	1	1
BRCA1	c.4903G>T	NS	NMD	PTC	1	1
BRCA1	c.4905_4906del	FS	NMD	PTC	1	2
BRCA1	c.4921del	FS	NMD	PTC	1	1
BRCA1	c.493_494del	FS	NMD	PTC	1	1
BRCA1	c.4930G>T	NS	NMD	PTC	1	1
BRCA1	c.4932_4933dup	FS	NMD	PTC	1	7
BRCA1	c.4936del	FS	NMD	PTC	1	10
BRCA1	c.4941del	FS	NMD	PTC	1	1
BRCA1	c.4945_4947delinsTTTT	FS	NMD	PTC	1	5
BRCA1	c.4945del	FS	NMD	PTC	1	3
BRCA1	c.494dup	FS	NMD	PTC	1	8
BRCA1	c.4964_4979del	FS	NMD	PTC	1	1
BRCA1	c.4964_4982del	FS	NMD	PTC	1	69
BRCA1	c.4976del	FS	NMD	PTC	1	2
BRCA1	c. $4981 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.4986+1_4986+2ins65	S	Unknown	Unknown	3	1
BRCA1	c. $4986+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	2
BRCA1	c. $4986+1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	1
BRCA1	c. $4986+2 T>C$	S	Unknown	Unknown	3	1
BRCA1	c. $4986+3 \mathrm{G}>\mathrm{C}$	S	NMD	PTC	1	32
BRCA1	c. $4986+4 A>C$	S	NMD	PTC	1	9
BRCA1	c. $4986+4 A>T$	S	NMD	PTC	1	3
BRCA1	c. $4986+5 \mathrm{G}>\mathrm{A}$	S	NMD	PTC	1	1
BRCA1	c. $4986+5 \mathrm{G}>\mathrm{C}$	S	NMD	PTC	1	1
BRCA1	c. $4986+6 T>C$	S	NMD	PTC	1	8
BRCA1	c. $4986+6 T>G$	S	NMD	PTC	1	15
BRCA1	c.4986+890_5075-984del	DL	Unknown	Unknown	3	2
BRCA1	c.4986+955_5074+751del	DL	NMD	PTC	1	5
BRCA1	c.4987-?_5074+?del	DL	Unknown	Unknown	3	24
BRCA1	c.4987-?_5152+?del	DL	Unknown	Unknown	3	1
BRCA1	c.4987-?_5193+?del	DL	Unknown	Unknown	3	10
BRCA1	c.4987-?_5277+?del	DL	Unknown	Unknown	3	1
BRCA1	c.4987-?_5592+?del	DL	Unknown	Unknown	3	1
BRCA1	c.4987_5074del	DL	Unknown	Unknown	3	3
BRCA1	c.4987-1G>A	S	Unknown	Unknown	3	4
BRCA1	c.4987-1G>T	S	Unknown	Unknown	3	1
BRCA1	c.4987-2341_5074+2676del	DL	NMD	PTC	1	2
BRCA1	c.4987-2508_5074+84del	DL	NMD	PTC	1	25
BRCA1	c.4987-2A>G	S	Unknown	Unknown	3	4
BRCA1	c.4987-577_5074+343del	DL	NMD	PTC	1	1
BRCA1	c.4987-5T>A	S	NMD	PTC	1	1
BRCA1	c.4987-5T>C	S	NMD	PTC	1	1
BRCA1	c. 4987 del	FS/S?	Unknown	Unknown	3	1
BRCA1	c.4995_5007dup	FS	NMD	PTC	1	1
BRCA1	c.4999A>T	NS	NMD	PTC	1	1
BRCA1	c.500_501del	FS	NMD	PTC	1	1
BRCA1	c.5013dup	FS	NMD	PTC	1	1
BRCA1	c.5019del	FS	NMD	PTC	1	1
BRCA1	c.5026_5027del	FS	NMD	PTC	1	1
BRCA1	c.5026_5036del	FS	NMD	PTC	1	1

BRCA1	c.5027del	FS	NMD	PTC	1	1
BRCA1	c.5027T>A	NS	NMD	PTC	1	2
BRCA1	c.502A>T	NS	NMD	PTC	1	1
BRCA1	c.5030_5033del	FS	NMD	PTC	1	83
BRCA1	c.5030_5033dup	FS	NMD	PTC	1	1
BRCA1	c.5033_5034ins(4)	FS	NMD	PTC	1	1
BRCA1	c.5035_5039del	FS	NMD	PTC	1	31
BRCA1	c.5035del	FS	NMD	PTC	1	3
BRCA1	c.5038_5041dup	FS	NMD	PTC	1	2
BRCA1	c.5041_5042insTTAA	FS	NMD	PTC	1	1
BRCA1	c.5042del	FS	NMD	PTC	1	1
BRCA1	c.5044_5048delinsT	FS	NMD	PTC	1	1
BRCA1	c. $5047 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.5050_5051del	FS	NMD	PTC	1	2
BRCA1	c. $5053 \mathrm{~A}>\mathrm{G}$	MS	MS	MS	2	2
BRCA1	c.5054C>T	MS	MS	MS	2	1
BRCA1	c.5056dup	FS	NMD	PTC	1	1
BRCA1	c.5058_5059insCAAC	FS	NMD	PTC	1	1
BRCA1	c. $505 \mathrm{C}>$ T	NS	NMD	PTC	1	8
BRCA1	c.5062_5064del	IFD	IFD	IFD	2	36
BRCA1	c.5065dup	FS	NMD	PTC	1	1
BRCA1	c.5066T>G	MS	Unknown	Unknown	3	2
BRCA1	c.5068A>T	NS	NMD	PTC	1	1
BRCA1	c.5071dup	FS	NMD	PTC	1	4
BRCA1	c. $5074+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	11
BRCA1	c. $5074+1 \mathrm{G}>\mathrm{C}$	S	Unknown	Unknown	3	1
BRCA1	c. $5074+1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	5
BRCA1	c. $5074+2 \mathrm{~T}>\mathrm{C}$	S	Unknown	Unknown	3	3
BRCA1	c.5074+991_5193+1541del	DL	NMD	PTC	1	1
BRCA1	c. $5074 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	7
BRCA1	c. $5074 \mathrm{G}>\mathrm{C}$	S	NMD	PTC	1	6
BRCA1	c. $5074 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	1
BRCA1	c.5075-?_5152+?del	DL	Unknown	Unknown	3	1
BRCA1	c.5075-?_5193+?del	DL	Unknown	Unknown	3	12
BRCA1	c.5075-?_5193+?dup	DP	Unknown	Unknown	3	4
BRCA1	c.5075-?_5277+?del	DL	Unknown	Unknown	3	1
BRCA1	c.5075-?_5277+?dup	DP	Unknown	Unknown	3	3
BRCA1	c.5075-?_5592+?del	DL	Unknown	Unknown	3	1
BRCA1	c.5075-1093_5277+2089dup	DP	NMD	PTC	1	1
BRCA1	c.5075-1447_5193+5179delins27	DL	Unknown	Unknown	3	3
BRCA1	c.5075-1G>C	S	Unknown	Unknown	3	1
BRCA1	c. $5075-2 A>C$	S	NMD	PTC	1	2
BRCA1	c.5075-2A>G	S	NMD	PTC	1	1
BRCA1	c.5075-2del	S	Unknown	Unknown	3	1
BRCA1	c.5075-8T>G	S	NMD	PTC	1	1
BRCA1	c.5076del	FS	NMD	PTC	1	1
BRCA1	c.5077_5080delinsTTGATTCTGC	S	IFD	IFD	2	2
BRCA1	c.5078_5080del	S	IFD	IFD	2	9
BRCA1	c.5080G>T	S	IFD	IFD	2	29
BRCA1	c.5083_5084insG	FS	NMD	PTC	1	1
BRCA1	c.5084_5085del	FS	NMD	PTC	1	6
BRCA1	c.5095C>T	MS	MS	MS	2	35
BRCA1	c.5102_5103del	FS	NMD	PTC	1	6
BRCA1	c.5106del	FS	NMD	PTC	1	8
BRCA1	c.5109T>G	NS	NMD	PTC	1	12
BRCA1	c.5114_5121del	FS	NMD	PTC	1	1
BRCA1	c. 5117 G >	MS	MS	MS	2	18

1

BRCA1	c. $5123 \mathrm{C}>\mathrm{A}$	MS	MS	MS	2	168
BRCA1	c.5126del	FS	NMD	PTC	1	2
BRCA1	c.5128G>T	NS	NMD	PTC	1	3
BRCA1	c.5131A>T	NS	NMD	PTC	1	2
BRCA1	c.5135G>A	NS	NMD	PTC	1	2
BRCA1	c.5136G>A	NS	NMD	PTC	1	3
BRCA1	c.5137del	FS	NMD	PTC	1	24
BRCA1	c.5143A>C	MS	MS	MS	2	6
BRCA1	c.5145C>G	MS	MS	MS	2	1
BRCA1	c.514C>T	NS	NMD	PTC	1	6
BRCA1	c.514del	FS	NMD	PTC	1	40
BRCA1	c.5150del	FS	NMD	PTC	1	1
BRCA1	c.5152+149_5193+2200delinsTTTTTTTTTTTT	DL	Unknown	Unknown	3	1
BRCA1	c. $5152+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	2
BRCA1	c. $5152+1 \mathrm{G}>\mathrm{C}$	S	IFD	IFD	2	10
BRCA1	c. $5152+1 \mathrm{G}>\mathrm{T}$	S	IFD	IFD	2	10
BRCA1	c.5152+2dup	S	Unknown	Unknown	3	1
BRCA1	c. $5152+2 T>A$	S	Unknown	Unknown	3	1
BRCA1	c. $5152+3 A>C$	S	Unknown	Unknown	3	5
BRCA1	c. $5152+5 \mathrm{G}>\mathrm{A}$	S	IFD	IFD	2	6
BRCA1	c.5153-?_5193+?del	DL	Unknown	Unknown	3	1
BRCA1	c.5153-1G>A	S	Unknown	Unknown	3	19
BRCA1	c.5153-1G>C	S	Unknown	Unknown	3	10
BRCA1	c.5153-2A>G	S	Unknown	Unknown	3	1
BRCA1	c.5153-2del	S	NMD	PTC	1	20
BRCA1	c.5153G>A	NS/S?	Unknown	Unknown	3	12
BRCA1	c. $5154 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	19
BRCA1	c.5155del	FS	NMD	PTC	1	1
BRCA1	c.5155dup	FS	NMD	PTC	1	1
BRCA1	c.5161_5165del	FS	NMD	PTC	1	1
BRCA1	c.5161C>T	NS	NMD	PTC	1	4
BRCA1	c.5161del	FS	Unknown	Unknown	3	1
BRCA1	c.5162del	FS	NMD	PTC	1	1
BRCA1	c.5163_5164insC	FS	NMD	PTC	1	2
BRCA1	c.5165C>T	MS	MS	MS	2	2
BRCA1	c.5177_5178del	FS	NMD	PTC	1	1
BRCA1	c.5177_5180del	FS	NMD	PTC	1	54
BRCA1	c.5179A>T	NS	NMD	PTC	1	15
BRCA1	c.518del	FS	NMD	PTC	1	2
BRCA1	c.5193+1del	S	NMD	PTC	1	9
BRCA1	c. $5193+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	4
BRCA1	c. $5193+1 \mathrm{G}>\mathrm{C}$	S	Unknown	Unknown	3	1
BRCA1	c.5193+2628_5277+670del	DL	IFD	IFD	2	1
BRCA1	c.5193+2del	S	NMD	PTC	1	15
BRCA1	c. $5193+2 T>G$	S	NMD	PTC	1	1
BRCA1	c.5194-?_5277+?del	DL	Unknown	Unknown	3	45
BRCA1	c.5194-?_5277+?delinsG	DL	NMD	PTC	1	6
BRCA1	c.5194-?_5277+?dup	DP	Unknown	Unknown	3	1
BRCA1	c.5194-?_5592+?del	DL	Unknown	Unknown	3	1
BRCA1	c.5194-12G>A	S	Unknown	Unknown	3	2
BRCA1	c.5194-1699_5277+1996delins236	DL	Unknown	Unknown	3	1
BRCA1	c.5194-1730_5277+1996delins268	DL	Unknown	Unknown	3	1
BRCA1	c.5194-1G>C	S	Unknown	Unknown	3	1
BRCA1	c.5194-1G>T	S	Unknown	Unknown	3	1
BRCA1	c.5194-2840_5406+536del	DL	IFD	IFD	2	6
BRCA1	c.5194-2A>G	S	Unknown	Unknown	3	7
BRCA1	c.5194-452_5277+3638del	DL	IFD	IFD	2	1

BRCA1	c.5194-5858_5277+2206del	DL	IFD	IFD	2	11
BRCA1	c.51del	FS	NMD	PTC	1	1
BRCA1	c.5208_5247delinsTC	FS	No NMD	PTC	2	1
BRCA1	c.5209A>T	NS	NMD	PTC	1	2
BRCA1	c.5209dup	FS	No NMD	PTC	2	1
BRCA1	c.520del	FS	NMD	PTC	1	12
BRCA1	c.5212G>A	MS	MS	MS	2	38
BRCA1	c.5212G>T	NS	NMD	PTC	1	1
BRCA1	c.5213del	FS	NMD	PTC	1	2
BRCA1	c. $5213 \mathrm{G} \times \mathrm{A}$	MS	MS	MS	2	35
BRCA1	c.5221_5224del	FS	NMD	PTC	1	1
BRCA1	c.5230_5237del	FS	NMD	PTC	1	1
BRCA1	c.5239C>T	NS	NMD	PTC	1	1
BRCA1	c.5239del	FS	NMD	PTC	1	2
BRCA1	c.5251C>T	NS	NMD	PTC	1	94
BRCA1	c.5256_5278-2757del	DL	NMD	PTC	1	11
BRCA1	c.5257dup	FS	No NMD	PTC	2	1
BRCA1	c.5259del	FS	NMD	PTC	1	2
BRCA1	c.5260G>T	NS	NMD	PTC	1	4
BRCA1	c.5266C>T	NS	NMD	PTC	1	4
BRCA1	c.5266dup	FS	No NMD	PTC	2	2897
BRCA1	c.5267_5268insC	FS	No NMD	PTC	2	6
BRCA1	c. $5277+1 \mathrm{del}$	S	Unknown	Unknown	3	1
BRCA1	c. $5277+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	81
BRCA1	c.5277+2100_5467+344dup	DP	No NMD	PTC	2	1
BRCA1	c.5277+833_5277+1671delins141	DL	NMD	PTC	1	1
BRCA1	c. $5277 \mathrm{G} \times \mathrm{A}$	S?	Unknown	Unknown	3	1
BRCA1	c.5278-?_5332+?del	DL	Unknown	Unknown	3	3
BRCA1	c.5278-?_5406+?del	DL	Unknown	Unknown	3	13
BRCA1	c.5278-?_5406+?dup	DP	Unknown	Unknown	3	2
BRCA1	c.5278-?_5467+?del	DL	Unknown	Unknown	3	3
BRCA1	c.5278-?_5467+?dup	DP	Unknown	Unknown	3	1
BRCA1	c.5278-?_5592+?del	DL	Unknown	Unknown	3	30
BRCA1	c.5278-1G>A	S	NMD	PTC	1	4
BRCA1	c.5278-1G>C	S	Unknown	Unknown	3	3
BRCA1	c. $5278-1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	8
BRCA1	c.5278-2A>G	S	Unknown	Unknown	3	2
BRCA1	c.5278-2del	S	No NMD	PTC	2	1
BRCA1	c.5282del	FS	NMD	PTC	1	1
BRCA1	c.5289del	FS	NMD	PTC	1	2
BRCA1	c.5289dup	FS	No NMD	PTC	2	4
BRCA1	c.5291T>C	MS	MS	MS	2	6
BRCA1	c.5297T>A	MS	MS	MS	2	1
BRCA1	c.5297T>G	MS	MS	MS	2	2
BRCA1	c.5299del	FS	NMD	PTC	1	1
BRCA1	c.529del	FS	NMD	PTC	1	1
BRCA1	c.5300_5301del	FS	NMD	PTC	1	1
BRCA1	c.5301T>A	NS	NMD	PTC	1	1
BRCA1	c.5302del	FS	NMD	PTC	1	1
BRCA1	c.5307T>A	NS	NMD	PTC	1	1
BRCA1	c.5310del	FS	NMD	PTC	1	1
BRCA1	c.5311_5332+1del	FS/S?	Unknown	Unknown	3	1
BRCA1	c.5315del	FS	NMD	PTC	1	1
BRCA1	c.5319dup	FS	No NMD	PTC	2	5
BRCA1	c.531del	FS	NMD	PTC	1	1
BRCA1	c.5320_5321del	FS	No NMD	PTC	2	1
BRCA1	c.5324T>A	MS	MS	MS	2	3

BRCA1	c.5324T>G	MS	MS	MS	2	19
BRCA1	c.5328dup	FS	NMD	PTC	1	3
BRCA1	c.5331_5332+6delinsCAACAT	FS/S?	Unknown	Unknown	3	1
BRCA1	c. $5332+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	9
BRCA1	c. $5332+1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	1
BRCA1	c. $5332+2 T>A$	S	NMD	PTC	1	1
BRCA1	c. $5332+2 T>C$	S	Unknown	Unknown	3	2
BRCA1	c. $5332+4 \mathrm{~A}>\mathrm{G}$	S	NMD	PTC	1	1
BRCA1	c. $5332 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	1
BRCA1	c.5333-?_5406+?del	DL	Unknown	Unknown	3	38
BRCA1	c.5333-198_5387del	DL	Unknown	Unknown	3	2
BRCA1	c.5333-1G>C	S	Unknown	Unknown	3	2
BRCA1	c.5333-1G>T	S	No NMD	PTC	2	1
BRCA1	c.5333-2A>C	S	Unknown	Unknown	3	1
BRCA1	c.5333-36_5406+400del	DL	No NMD	PTC	2	116
BRCA1	c.5333-3T>G	FS/S?	Unknown	Unknown	3	1
BRCA1	c.5335C>T	NS	NMD	PTC	1	2
BRCA1	c.5335del	FS	NMD	PTC	1	9
BRCA1	c.5341_5343delinsTG	FS	NMD	PTC	1	1
BRCA1	c.5341del	FS	NMD	PTC	1	5
BRCA1	c.5341G>T	NS	NMD	PTC	1	1
BRCA1	c. $5345 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	10
BRCA1	c. $5346 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	3
BRCA1	c.5352dup	FS	No NMD	PTC	2	2
BRCA1	c.5353_5354dup	FS	NMD	PTC	1	1
BRCA1	c.5353C>T	NS	NMD	PTC	1	4
BRCA1	c.5359T>A	MS	MS	MS	2	8
BRCA1	c.5361_5362del	FS	No NMD	PTC	2	3
BRCA1	c.5363G>T	MS	MS	MS	2	5
BRCA1	c.5386del	FS	No NMD	PTC	2	1
BRCA1	c.5389dup	FS	No NMD	PTC	2	1
BRCA1	c.5390C>G	NS	NMD	PTC	1	2
BRCA1	c.5406+1_5406+3del	S?	Unknown	Unknown	3	6
BRCA1	c. $5406+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	3
BRCA1	c. $5406+2 \mathrm{del}$	S	No NMD	PTC	2	3
BRCA1	c. $5406+3 A>T$	S	No NMD	PTC	2	1
BRCA1	c. $5406+5 \mathrm{G}>\mathrm{A}$	S	No NMD	PTC	2	2
BRCA1	c. $5406+5 \mathrm{G}>\mathrm{C}$	S	No NMD	PTC	2	3
BRCA1	c.5406+664_*8273del	DL	Unknown	Unknown	3	26
BRCA1	c.5407-?_5467+?del	DL	Unknown	Unknown	3	3
BRCA1	c.5407-?_5467+?dup	DP	Unknown	Unknown	3	3
BRCA1	c.5407-?_5592+?del	DL	Unknown	Unknown	3	9
BRCA1	c.5407-1G>A	S	Unknown	Unknown	3	1
BRCA1	c.5407-1G>C	S	Unknown	Unknown	3	1
BRCA1	c.5407-2A>G	S	Unknown	Unknown	3	1
BRCA1	c.5417del	FS	No NMD	PTC	2	2
BRCA1	c.5419del	FS	No NMD	PTC	2	6
BRCA1	c.5419dup	FS	No NMD	PTC	2	1
BRCA1	c.5431C>T	NS	NMD	PTC	1	5
BRCA1	c.5434C>G	S	Unknown	Unknown	3	2
BRCA1	c. $5444 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	22
BRCA1	c. $5445 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	11
BRCA1	c.5449G>T	NS	NMD	PTC	1	4
BRCA1	c.5450_5451del	FS	No NMD	PTC	2	1
BRCA1	c. $5453 \mathrm{~A}>\mathrm{G}$	S	Unknown	Unknown	3	1
BRCA1	c.5463_5464insT	FS	unknown	Unknown	3	1
BRCA1	c.5467+1del	S	Unknown	Unknown	3	1

BRCA1	c. $5467+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	11
BRCA1	c. $5467+2 T>C$	S	Unknown	Unknown	3	3
BRCA1	c. $5467 \mathrm{G}>\mathrm{A}$	S	No NMD	PTC	2	11
BRCA1	c.5468-?_5592+?del	DL	Unknown	Unknown	3	24
BRCA1	c.5468-11_5520dup	FS	No NMD	PTC	2	1
BRCA1	c.5468-1G>A	S	Unknown	Unknown	3	2
BRCA1	c.5468-285_5592+4019delinsCACAG	DL	No RNA	No RNA	1	24
BRCA1	c. $5468-2 A>G$	S	Unknown	Unknown	3	2
BRCA1	c.5468-2A>T	S	Unknown	Unknown	3	1
BRCA1	c. $547+1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	7
BRCA1	c.547+240_5193+178del	DL	NMD	PTC	1	1
BRCA1	c. $547+2 \mathrm{~T}>\mathrm{A}$	S	Unknown	Unknown	3	10
BRCA1	c. $547+3 A>T$	FS	NMD	PTC	1	1
BRCA1	c.5470_5477del	FS	NMD	PTC	1	7
BRCA1	c.5478_5479dup	FS	NMD	PTC	1	3
BRCA1	c.548-?_4185+?del	DL	Unknown	Unknown	3	36
BRCA1	c.548-?_5193+?del	DL	Unknown	Unknown	3	2
BRCA1	c.5483del	FS	No NMD	PTC	2	1
BRCA1	c.5485dup	FS	No NMD	PTC	2	4
BRCA1	c.5486_5510del	FS	No NMD	PTC	2	1
BRCA1	c.5490del	FS	No NMD	PTC	2	1
BRCA1	c.5492del	FS	No NMD	PTC	2	11
BRCA1	c.5493_5494insTT	FS	No NMD	PTC	2	1
BRCA1	c.5496_5499del	FS	No NMD	PTC	2	1
BRCA1	c.5496_5506delinsA	FS	No NMD	PTC	2	17
BRCA1	c.5502_5503dup	FS	No NMD	PTC	2	1
BRCA1	c.5503_5506del	FS	No NMD	PTC	2	1
BRCA1	c.5503_5564del	FS	No NMD	PTC	2	7
BRCA1	c.5503C>T	NS	No NMD	PTC	2	176
BRCA1	c.5503del	FS	No NMD	PTC	2	2
BRCA1	c.5503dup	FS	No NMD	PTC	2	3
BRCA1	c.5506G>T	NS	No NMD	PTC	2	1
BRCA1	c. $5510 \mathrm{G}>\mathrm{A}$	NS	No NMD	PTC	2	5
BRCA1	c. $5511 \mathrm{G}>\mathrm{A}$	NS	No NMD	PTC	2	2
BRCA1	c.5512del	FS	No NMD	PTC	2	1
BRCA1	c.5513T>A	MS	No NMD	PTC	2	4
BRCA1	c.5521del	FS	No NMD	PTC	2	1
BRCA1	c.5534_5539delins(20)	FS	No NMD	PTC	2	1
BRCA1	c. $5535 \mathrm{C}>\mathrm{A}$	NS	No NMD	PTC	2	2
BRCA1	c. $5535 \mathrm{C}>\mathrm{G}$	NS	No NMD	PTC	2	1
BRCA1	c.5536C>T	NS	No NMD	PTC	2	7
BRCA1	c.5537_5556del	FS	No NMD	PTC	2	1
BRCA1	c.5542C>T	NS	No NMD	PTC	2	1
BRCA1	c.5548del	FS	No NMD	PTC	2	1
BRCA1	c.5551del	FS	No NMD	PTC	2	1
BRCA1	c.5553dup	FS	No NMD	PTC	2	1
BRCA1	c.5556_5560del	FS	No NMD	PTC	2	1
BRCA1	c.5558dup	FS	No NMD	PTC	2	1
BRCA1	c.5560del	FS	No NMD	PTC	2	2
BRCA1	c.55C>T	NS	NMD / Re-initii	PTC	1	1
BRCA1	c.569_570insAACG	FS	NMD	PTC	1	1
BRCA1	c.594-?_4484+?del	DL	Unknown	Unknown	3	1
BRCA1	c.594_597del	FS	NMD	PTC	1	1
BRCA1	c.61del	FS	NMD / Re-initi	PTC	1	1
BRCA1	c.62_65del	FS	NMD	PTC	1	1
BRCA1	c.626del	FS	NMD	PTC	1	1
BRCA1	c.628C>T	NS	NMD	PTC	1	1

BRCA1	c.64_65dup	FS	NMD / Re-initi	PTC	1	2
BRCA1	c.640del	FS	NMD	PTC	1	1
BRCA1	c.65T>C	MS	MS	MS	3	5
BRCA1	c.667_668del	FS	NMD	PTC	1	1
BRCA1	c.668del	FS	NMD	PTC	1	1
BRCA1	c.668dup	FS	NMD	PTC	1	1
BRCA1	c.66dup	FS	NMD / Re-initi		1	80
BRCA1	c.670+1del	S	Unknown	Unknown	3	1
BRCA1	c.671-?_4185+?del	DL	Unknown	Unknown	3	8
BRCA1	c.671-?_4484+?del	DL	Unknown	Unknown	3	1
BRCA1	c.671-?_4675+?del	DL	Unknown	Unknown	3	6
BRCA1	c. $671-1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	1
BRCA1	c.671-1G>T	S	Unknown	Unknown	3	1
BRCA1	c.671-215_901del	DL	Unknown	Unknown	3	1
BRCA1	c.671-26_1781del	DL	Unknown	Unknown	3	1
BRCA1	c. $671-2 A>C$	S	Unknown	Unknown	3	2
BRCA1	c. $671-2 A>G$	S	Unknown	Unknown	3	1
BRCA1	c.671-2A>T	S	Unknown	Unknown	3	1
BRCA1	c.676del	FS	NMD	PTC	1	37
BRCA1	c. $678 \mathrm{~T}>$ A	NS	NMD	PTC	1	3
BRCA1	c.679G>T	NS	unknown	Unknown	3	1
BRCA1	c.68_69del	FS	NMD / Re-initi		1	2242
BRCA1	c.685del	FS	NMD	PTC	1	8
BRCA1	c.689_692del	FS	NMD	PTC	1	2
BRCA1	c.68dup	FS	NMD / Re-initi		1	3
BRCA1	c.697_698del	FS	NMD	PTC	1	3
BRCA1	c.69dup	FS	NMD / Re-initi		1	1
BRCA1	c.70_73dup	FS	NMD / Re-initi		1	6
BRCA1	c.70_80del	FS	NMD / Re-initi		1	20
BRCA1	c.707del	FS	NMD	PTC	1	1
BRCA1	c.70T>C	MS	MS	MS	3	3
BRCA1	c.71_72del	FS	NMD / Re-initi:	PTC	1	2
BRCA1	c.712_713ins(31)	FS	NMD	PTC	1	1
BRCA1	c.718C>T	NS	NMD	PTC	1	2
BRCA1	c.743_744insA	FS	NMD	PTC	1	1
BRCA1	c.750_751del	FS	NMD	PTC	1	1
BRCA1	c.-7620_80+468delins(8)	DL	No RNA	No RNA	1	2
BRCA1	c.763G>T	NS	NMD	PTC	1	3
BRCA1	c.778_779dup	FS	NMD	PTC	1	1
BRCA1	c.783T>G	NS	NMD	PTC	1	3
BRCA1	c. $784 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	3
BRCA1	c.784del	FS	NMD	PTC	1	2
BRCA1	c.788dup	FS	NMD	PTC	1	1
BRCA1	c.791_794del	FS	NMD	PTC	1	2
BRCA1	c.798_799del	FS	NMD	PTC	1	76
BRCA1	c.799dup	FS	NMD	PTC	1	2
BRCA1	c. $80+1 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	3
BRCA1	c. $80+1 \mathrm{G}>\mathrm{C}$	S	Unknown	Unknown	3	1
BRCA1	c. $80+1 \mathrm{G}>\mathrm{T}$	S	Unknown	Unknown	3	1
BRCA1	c. $80+2 T>A$	S	Unknown	Unknown	3	1
BRCA1	c. $80+2 \mathrm{~T}>\mathrm{G}$	S	Unknown	Unknown	3	1
BRCA1	c. $80+5 \mathrm{G}>\mathrm{A}$	S	Unknown	Unknown	3	3
BRCA1	c. $800 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c.807_817dup	FS	NMD	PTC	1	1
BRCA1	c.81-?_134+?del	DL	Unknown	Unknown	3	45
BRCA1	c.81-?_134+?dup	DP	Unknown	Unknown	3	1
BRCA1	c.81-?_4185+?del	DL	Unknown	Unknown	3	3

BRCA1	c.81-?_441+?del	DL	Unknown	Unknown	3	1
BRCA1	c.81-?_4986+?del	DL	Unknown	Unknown	3	31
BRCA1	c.81-? $5152+$?dup	DP	Unknown	Unknown	3	1
BRCA1	c.81-?_5193+?del	DL	Unknown	Unknown	3	1
BRCA1	c.81-?_547+?dup	DP	Unknown	Unknown	3	8
BRCA1	c.81-1588_134+1725del	DL	Unknown	Unknown	3	3
BRCA1	c.81-1G>A	S	Unknown	Unknown	3	4
BRCA1	c.81-1G>C	S	NMD	PTC	1	9
BRCA1	c. $814 \mathrm{G}>$ T	NS	NMD	PTC	1	1
BRCA1	c.815_816insTCCATGTGGA	FS	NMD	PTC	1	1
BRCA1	c.815_824dup	FS	NMD	PTC	1	47
BRCA1	c.81-5858_135-4943del	DL	Unknown	Unknown	3	1
BRCA1	c.824_825ins10	FS	NMD	PTC	1	9
BRCA1	c.829_830del	FS	NMD	PTC	1	1
BRCA1	c.829_836del	FS	NMD	PTC	1	1
BRCA1	c.83_84del	FS	NMD / Re-initi		1	3
BRCA1	c.832dup	FS	NMD	PTC	1	1
BRCA1	c.835del	FS	NMD	PTC	1	4
BRCA1	c.841_842dup	FS	NMD	PTC	1	1
BRCA1	c.843_846del	FS	NMD	PTC	1	54
BRCA1	c.844_850dup	FS	NMD	PTC	1	5
BRCA1	c. $848 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA1	c. $850 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	3
BRCA1	c.851_852ins(7)	FS	NMD	PTC	1	3
BRCA1	c. $856 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c. $85 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.861_862dup	FS	NMD	PTC	1	1
BRCA1	c.862del	FS	NMD	PTC	1	1
BRCA1	c.869T>G	NS	unknown	Unknown	3	1
BRCA1	c.873dup	FS	NMD	PTC	1	1
BRCA1	c.874del	FS	NMD	PTC	1	1
BRCA1	c.882del	FS	NMD	PTC	1	1
BRCA1	c.892-?_4096+?dup	DP	Unknown	Unknown	3	1
BRCA1	c.895_896del	FS	NMD	PTC	1	5
BRCA1	c. $898 \mathrm{G} \times \mathrm{T}$	NS	NMD	PTC	1	1
BRCA1	c.89T>A	NS	NMD / Re-initi	PTC	1	1
BRCA1	c.904del	FS	NMD	PTC	1	1
BRCA1	c.922_924delinsT	FS	NMD	PTC	1	13
BRCA1	c.923_924del	FS	NMD	PTC	1	1
BRCA1	c.923del	FS	NMD	PTC	1	4
BRCA1	c.924del	FS	NMD	PTC	1	1
BRCA1	c. $925 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA1	c.927del	FS	NMD	PTC	1	1
BRCA1	c. $928 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	6
BRCA1	c.929del	FS	NMD	PTC	1	15
BRCA1	c.930del	FS	NMD	PTC	1	6
BRCA1	c.93del	FS	NMD	PTC	1	1
BRCA1	c.944_1007del	FS	NMD	PTC	1	1
BRCA1	c. $949 \mathrm{C}>$ T	NS	NMD	PTC	1	1
BRCA1	c.952_1015del	FS	NMD	PTC	1	13
BRCA1	c.953del	FS	NMD	PTC	1	1
BRCA1	c.958del	FS	NMD	PTC	1	1
BRCA1	c.959_960del	FS	NMD	PTC	1	1
BRCA1	c. $962 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	44
BRCA1	c.963G>A	NS	NMD	PTC	1	3
BRCA1	c.964del	FS	NMD	PTC	1	5
BRCA1	c.966del	FS	NMD	PTC	1	1

BRCA2 c.1225del	FS	NMD	PTC	1	1
BRCA2 c.1225delinsTTT	FS	NMD	PTC	1	1
BRCA2 c.1226del	FS	NMD	PTC	1	1
BRCA2 c.1231del	FS	NMD	PTC	1	7
BRCA2 c.1232_1242delinsACAT	FS	NMD	PTC	1	1
BRCA2 c.1233dup	FS	NMD	PTC	1	2
BRCA2 c.1237del	FS	NMD	PTC	1	1
BRCA2 c.1238del	FS	NMD	PTC	1	21
BRCA2 c.1249del	FS	NMD	PTC	1	1
BRCA2 c.1253C>A	NS	NMD	PTC	1	1
BRCA2 c.1253C>G	NS	NMD	PTC	1	1
BRCA2 c.1257del	FS	NMD	PTC	1	6
BRCA2 $\mathrm{c} .1261 \mathrm{C}>$ T	NS	NMD	PTC	1	1
BRCA2 c.1265del	FS	NMD	PTC	1	5
BRCA2 c.127_128del	FS	NMD	PTC	1	1
BRCA2 $\mathrm{c} .1286 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA2 c.1287dup	FS	NMD	PTC	1	1
BRCA2 c.1296_1297del	FS	NMD	PTC	1	12
BRCA2 c.1298dup	FS	NMD	PTC	1	1
BRCA2 c.1300_1303del	FS	NMD	PTC	1	2
BRCA2 c.1308_1309del	FS	NMD	PTC	1	4
BRCA2 c.1310_1313del	FS	NMD	PTC	1	108
BRCA2 c.1317del	FS	NMD	PTC	1	1
BRCA2 c.1318_1319dup	FS	NMD	PTC	1	2
BRCA2 c.1325C>A	NS	NMD	PTC	1	2
BRCA2 $\mathrm{c} .1327 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA2 c.1334del	FS	NMD	PTC	1	2
BRCA2 c.1362del	FS	NMD	PTC	1	8
BRCA2 c.1368_1369del	FS	NMD	PTC	1	2
BRCA2 c.1368_1369dup	FS	NMD	PTC	1	1
BRCA2 c.1376T>G	NS	NMD	PTC	1	2
BRCA2 c.1389_1390del	FS	NMD	PTC	1	27
BRCA2 c.1399A>T	NS	NMD	PTC	1	19
BRCA2 c.1404_1413del	FS	NMD	PTC	1	2
BRCA2 c.1405_1406del	FS	NMD	PTC	1	3
BRCA2 c.1408dup	FS	NMD	PTC	1	2
BRCA2 c.1411G>T	NS	NMD	PTC	1	3
BRCA2 c.1414C>T	NS	NMD	PTC	1	2
BRCA2 c.1448_1451dup	FS	NMD	PTC	1	3
BRCA2 c.1449_1451delinsTTCC	FS	NMD	PTC	1	1
BRCA2 c.1454del	FS	NMD	PTC	1	1
BRCA2 c.1456C>T	NS	NMD	PTC	1	3
BRCA2 c.145G>T	NS	NMD	PTC	1	54
BRCA2 c.1484dup	FS	NMD	PTC	1	1
BRCA2 c.1496_1497del	FS	NMD	PTC	1	5
BRCA2 c.1499del	FS	NMD	PTC	1	6
BRCA2 c.1508del	FS	NMD	PTC	1	1
BRCA2 c.1511_1512del	FS	NMD	PTC	1	1
BRCA2 c.1514del	FS	NMD	PTC	1	1
BRCA2 c.1528_1529del	FS	NMD	PTC	1	1
BRCA2 c.1538_1541del	FS	NMD	PTC	1	1
BRCA2 c.1540dup	FS	NMD	PTC	1	1
BRCA2 c.1560_1561del	FS	NMD	PTC	1	1
BRCA2 c.156_157insAlu	ins	unknown	Unknown	3	44
BRCA2 c.1572del	FS	NMD	PTC	1	1
BRCA2 c.1587_1590del	FS	NMD	PTC	1	1
BRCA2 c.1587delinsCA	FS	NMD	PTC	1	4

1
2

BRCA2	c.1593dup	FS	NMD	PTC	1	10
BRCA2	c.1594G>T	NS	NMD	PTC	1	1
BRCA2	c.1594_1595del	FS	NMD	PTC	1	1
BRCA2	c.1595_1599del	FS	NMD	PTC	1	1
BRCA2	c.1597del	FS	NMD	PTC	1	11
BRCA2	c.1599_1600del	FS	NMD	PTC	1	1
BRCA2	c.161del	FS	NMD	PTC	1	3
BRCA2	c. $1621 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA2	c.1636del	FS	NMD	PTC	1	4
BRCA2	c.1642C>T	NS	NMD	PTC	1	4
BRCA2	c.1648dup	FS	NMD	PTC	1	1
BRCA2	c. 1654 del	FS	NMD	PTC	1	4
BRCA2	c.1668_1671delinsATT	FS	NMD	PTC	1	1
BRCA2	c. $1670 T>G$	NS	NMD	PTC	1	6
BRCA2	c.1670_1683del	FS	NMD	PTC	1	1
BRCA2	c.1671_1674del	FS	NMD	PTC	1	1
BRCA2	c.1672del	FS	NMD	PTC	1	1
BRCA2	c.1674_1680del	FS	NMD	PTC	1	1
BRCA2	c. 1675 del	FS	NMD	PTC	1	1
BRCA2	c.1689G>A	NS	NMD	PTC	1	13
BRCA2	c.1693_1696del	FS	NMD	PTC	1	1
BRCA2	c.1705_1706del	FS	NMD	PTC	1	1
BRCA2	c. 1705 del	FS	NMD	PTC	1	3
BRCA2	c.1707_1708del	FS	NMD	PTC	1	4
BRCA2	c.170dup	FS	NMD	PTC	1	1
BRCA2	c.171C>G	NS	NMD	PTC	1	1
BRCA2	c.1739_1754del	FS	NMD	PTC	1	1
BRCA2	c. $1748 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA2	c.1748del	FS	NMD	PTC	1	2
BRCA2	c.1754del	FS	NMD	PTC	1	7
BRCA2	c.1755_1759del	FS	NMD	PTC	1	13
BRCA2	c.1762_1766del	FS	NMD	PTC	1	3
BRCA2	c.1763A>G	S	IFD	IFD	2	1
BRCA2	c.1763_1766del	FS	NMD	PTC	1	6
BRCA2	c.1765_1766del	FS	NMD	PTC	1	1
BRCA2	c.1773_1776del	FS	NMD	PTC	1	14
BRCA2	c.1774_1777del	FS	NMD	PTC	1	1
BRCA2	c.1792del	FS	NMD	PTC	1	5
BRCA2	c.1796_1800del	FS	NMD	PTC	1	37
BRCA2	c.1797_1801del	FS	NMD	PTC	1	1
BRCA2	c.1798_1802del	FS	NMD	PTC	1	1
BRCA2	c.17_18del	FS	NMD	PTC	1	2
BRCA2	c. $1800 T>A$	NS	NMD	PTC	1	3
BRCA2	c. $1800 T>G$	NS	NMD	PTC	1	1
BRCA2	c.1805del	FS	NMD	PTC	1	2
BRCA2	c.1811_1812delinsG	FS	NMD	PTC	1	2
BRCA2	c.1813del	FS	NMD	PTC	1	43
BRCA2	c.1813dup	FS	NMD	PTC	1	172
BRCA2	c.1815dup	FS	NMD	PTC	1	12
BRCA2	c.1832C>A	NS	NMD	PTC	1	7
BRCA2	c.1832C>G	NS	NMD	PTC	1	2
BRCA2	c.1841_1844del	FS	NMD	PTC	1	1
BRCA2	c.1842dup	FS	NMD	PTC	1	6
BRCA2	c.1845_1846del	FS	NMD	PTC	1	2
BRCA2	c. $1850 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA2	c.1854_1855insA	FS	NMD	PTC	1	1
BRCA2	c.1855C>T	NS	NMD	PTC	1	3

BRCA2	c.1888_1889insAA	FS	NMD	PTC	1	1
BRCA2	c.1888del	FS	NMD	PTC	1	1
BRCA2	c.1889del	FS	NMD	PTC	1	8
BRCA2	c.1899_1900insTT	FS	NMD	PTC	1	6
BRCA2	c.1900_1901insTT	FS	NMD	PTC	1	1
BRCA2	c.1906del	FS	NMD	PTC	1	1
BRCA2	c. $1909+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	1
BRCA2	c.1913T>G	NS	NMD	PTC	1	1
BRCA2	c.1929del	FS	NMD	PTC	1	64
BRCA2	c.1943C>G	NS	NMD	PTC	1	1
BRCA2	c.1945C>T	NS	NMD	PTC	1	3
BRCA2	c.196C>T	NS	NMD	PTC	1	5
BRCA2	c.1981_1984dup	FS	NMD	PTC	1	1
BRCA2	c.1989del	FS	NMD	PTC	1	1
BRCA2	c.200_1910-877dup	DP	unknown	Unknown	3	1
BRCA2	c.201_202dup	FS	NMD	PTC	1	1
BRCA2	c.2023del	FS	NMD	PTC	1	1
BRCA2	c.2025_2026del	FS	NMD	PTC	1	1
BRCA2	c.2026del	FS	NMD	PTC	1	1
BRCA2	c.2049_2050del	FS	NMD	PTC	1	2
BRCA2	c.204del	FS	NMD	PTC	1	5
BRCA2	c.2086G>T	NS	NMD	PTC	1	1
BRCA2	c.2091dup	FS	NMD	PTC	1	1
BRCA2	c.2092del	FS	NMD	PTC	1	4
BRCA2	c.2094del	FS	NMD	PTC	1	4
BRCA2	c.2095C>T	NS	NMD	PTC	1	1
BRCA2	c.2095_2096del	FS	NMD	PTC	1	1
BRCA2	c.2103_2106del	FS	NMD	PTC	1	1
BRCA2	c.2111del	FS	NMD	PTC	1	1
BRCA2	c. $2129 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA2	c.212dup	FS	NMD	PTC	1	1
BRCA2	c. $2137 \mathrm{C}>$ T	NS	NMD	PTC	1	3
BRCA2	c.2147dup	FS	NMD	PTC	1	1
BRCA2	c.2150del	FS	NMD	PTC	1	2
BRCA2	c. $2151 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	2
BRCA2	c.215delinsTT	FS	NMD	PTC	1	1
BRCA2	c.2175dup	FS	NMD	PTC	1	4
BRCA2	c.2197del	FS	NMD	PTC	1	1
BRCA2	c.2202_2203insAA	FS	NMD	PTC	1	1
BRCA2	c.2206del	FS	NMD	PTC	1	1
BRCA2	c.2208del	FS	NMD	PTC	1	1
BRCA2	c.2209_2216del	FS	NMD	PTC	1	1
BRCA2	c. $2214 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	3
BRCA2	c. $2224 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	3
BRCA2	c. $2231 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	6
BRCA2	c.2244_2245del	FS	NMD	PTC	1	1
BRCA2	c.2245_2246insTTCAAAAGTGGAATTCAAAA	FS	NMD	PTC	1	1
BRCA2	c.224_225insA	FS	NMD	PTC	1	1
BRCA2	c.2251dup	FS	NMD	PTC	1	1
BRCA2	c.2255dup	FS	NMD	PTC	1	1
BRCA2	c.2259del	FS	NMD	PTC	1	2
BRCA2	c.2271_2272del	FS	NMD	PTC	1	1
BRCA2	c.2278_2279del	FS	NMD	PTC	1	2
BRCA2	c. $227 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA2	c.22_23del	FS	NMD	PTC	1	5
BRCA2	c. $2312 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA2	c.2330dup	FS	NMD	PTC	1	13

BRCA2	c. $2339 C>A / G$	NS	NMD	PTC	1	1
BRCA2	c. $2339 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA2	c. $2368 \mathrm{G}>$ T	NS	NMD	PTC	1	3
BRCA2	c. $2376 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA2	c.2380dup	FS	NMD	PTC	1	1
BRCA2	c.2397del	FS	NMD	PTC	1	1
BRCA2	c.2399dup	FS	NMD	PTC	1	1
BRCA2	c.2402_2412del	FS	NMD	PTC	1	1
BRCA2	c.2402_2420del	FS	NMD	PTC	1	1
BRCA2	c.2409T>G	NS	NMD	PTC	1	4
BRCA2	c.2421dup	FS	NMD	PTC	1	1
BRCA2	c.2430_2437del	FS	NMD	PTC	1	1
BRCA2	c. 2435 del	FS	NMD	PTC	1	2
BRCA2	c. $244 \mathrm{~A}>$ T	NS	NMD	PTC	1	10
BRCA2	c.2450del	FS	NMD	PTC	1	2
BRCA2	c.2451_2452dup	FS	NMD	PTC	1	1
BRCA2	c. $2455 \mathrm{C}>$ T	NS	NMD	PTC	1	3
BRCA2	c. 2471 T>G	NS	NMD	PTC	1	1
BRCA2	c.2471_2476del	FS	NMD	PTC	1	1
BRCA2	c.2471del	FS	NMD	PTC	1	1
BRCA2	c. $247 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA2	c.248_249del	FS	NMD	PTC	1	1
BRCA2	c.2490_2491insT	FS	NMD	PTC	1	1
BRCA2	c.2509_2513del	FS	NMD	PTC	1	1
BRCA2	c. $250 \mathrm{C}>$ T	NS	NMD	PTC	1	25
BRCA2	c.250del	FS	NMD	PTC	1	1
BRCA2	c.2514del	FS	NMD	PTC	1	4
BRCA2	c.2514dup	FS	NMD	PTC	1	2
BRCA2	c. $2517 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	2
BRCA2	c.2526dup	FS	NMD	PTC	1	1
BRCA2	c. $2537 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA2	c.2539A>T	NS	NMD	PTC	1	1
BRCA2	c.2539dup	FS	NMD	PTC	1	2
BRCA2	c.2545del	FS	NMD	PTC	1	1
BRCA2	c. $2548 \mathrm{C}>$ T	NS	NMD	PTC	1	1
BRCA2	c.2553del	FS	NMD	PTC	1	1
BRCA2	c.2564_2565del	FS	NMD	PTC	1	1
BRCA2	c.2588dup	FS	NMD	PTC	1	15
BRCA2	c.2593G>T	NS	NMD	PTC	1	1
BRCA2	c.2595del	FS	NMD	PTC	1	4
BRCA2	c.2603del	FS	NMD	PTC	1	1
BRCA2	c. $2606 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	5
BRCA2	c. $2612 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	3
BRCA2	c.2617dup	FS	NMD	PTC	1	1
BRCA2	c.2618dup	FS	NMD	PTC	1	1
BRCA2	c.262_263del	FS	NMD	PTC	1	24
BRCA2	c.2636_2637del	FS	NMD	PTC	1	1
BRCA2	c. $2641 \mathrm{G}>$ T	NS	NMD	PTC	1	1
BRCA2	c.2648del	FS	NMD	PTC	1	1
BRCA2	c.2650del	FS	NMD	PTC	1	1
BRCA2	c. $2651 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA2	c.2653_2656del	FS	NMD	PTC	1	5
BRCA2	c.2657del	FS	NMD	PTC	1	3
BRCA2	c.266del	FS	NMD	PTC	1	1
BRCA2	c.2684del	FS	NMD	PTC	1	1
BRCA2	c.26del	FS	NMD	PTC	1	16
BRCA2	c.2701del	FS	NMD	PTC	1	9

BRCA2	c.2703del	FS	NMD	PTC	1	1
BRCA2	c.271_272del	FS	NMD	PTC	1	2
BRCA2	c. $273 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	5
BRCA2	c. $273 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA2	c.2743_2747del	FS	NMD	PTC	1	7
BRCA2	c.2745_2746del	FS	NMD	PTC	1	3
BRCA2	c. 2748 T>A	NS	NMD	PTC	1	2
BRCA2	c.2748del	FS	NMD	PTC	1	1
BRCA2	c.2753del	FS	NMD	PTC	1	1
BRCA2	c.2758_2759insATGG	FS	NMD	PTC	1	1
BRCA2	c.2760del	FS	NMD	PTC	1	3
BRCA2	c.2764_2777del	FS	NMD	PTC	1	1
BRCA2	c.2765dup	FS	NMD	PTC	1	1
BRCA2	c.276_317-722delinsCCAT	DL	NMD	PTC	1	2
BRCA2	c.276dup	FS	NMD	PTC	1	3
BRCA2	c.2775dup	FS	NMD	PTC	1	1
BRCA2	c.2778_2782delins(12)	FS	NMD	PTC	1	1
BRCA2	c.2781_2785del	FS	NMD	PTC	1	1
BRCA2	c.2786del	FS	NMD	PTC	1	1
BRCA2	c.2786dup	FS	NMD	PTC	1	5
BRCA2	c.2798_2799del	FS	NMD	PTC	1	4
BRCA2	c.2808_2811del	FS	NMD	PTC	1	324
BRCA2	c.2812_2815del	FS	NMD	PTC	1	2
BRCA2	c. $2818 \mathrm{C}>$ T	NS	NMD	PTC	1	1
BRCA2	c.2830A>T	NS	NMD	PTC	1	37
BRCA2	c.2833_2834insTT	FS	NMD	PTC	1	2
BRCA2	c.2834_2835del	FS	NMD	PTC	1	3
BRCA2	c. 2835 del	FS	NMD	PTC	1	1
BRCA2	c.2836_2837del	FS	NMD	PTC	1	3
BRCA2	c.2836del	FS	NMD	PTC	1	3
BRCA2	c.2845del	FS	NMD	PTC	1	1
BRCA2	c.2847T>A	NS	NMD	PTC	1	1
BRCA2	c.2858del	FS	NMD	PTC	1	1
BRCA2	c.2870del	FS	NMD	PTC	1	1
BRCA2	c.2880del	FS	NMD	PTC	1	1
BRCA2	c.2881C>T	NS	NMD	PTC	1	2
BRCA2	c.2896dup	FS	NMD	PTC	1	1
BRCA2	c.2899_2900del	FS	NMD	PTC	1	2
BRCA2	c.289G>T	NS	NMD	PTC	1	18
BRCA2	c. $2905 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA2	c.2912T>G	NS	NMD	PTC	1	1
BRCA2	c.2930_2940del	FS	NMD	PTC	1	1
BRCA2	c.2945del	FS	NMD	PTC	1	1
BRCA2	c.2954_2957del	FS	NMD	PTC	1	1
BRCA2	c.2957_2958insG	FS	NMD	PTC	1	4
BRCA2	c.2957del	FS	NMD	PTC	1	1
BRCA2	c.2957dup	FS	NMD	PTC	1	7
BRCA2	c.2960dup	FS	NMD	PTC	1	3
BRCA2	c.2971_2983del	FS	NMD	PTC	1	1
BRCA2	c. $2978 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	3
BRCA2	c.2979G>A	NS	NMD	PTC	1	6
BRCA2	c. $2983 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA2	c.2990T>G	NS	NMD	PTC	1	1
BRCA2	c. $2 \mathrm{~T}>\mathrm{G}$	MS	unknown	Unknown	3	6
BRCA2	c.3009_3010del	FS	NMD	PTC	1	3
BRCA2	c.3018del	FS	NMD	PTC	1	1
BRCA2	c.3043A>T	NS	NMD	PTC	1	1

1

BRCA2	c. $3046 \mathrm{G}>$ T	NS	NMD	PTC	1	5
BRCA2	c.3051del	FS	NMD	PTC	1	2
BRCA2	c.3066dup	FS	NMD	PTC	1	3
BRCA2	c.3067_3071del	FS	NMD	PTC	1	1
BRCA2	c.3068del	FS	NMD	PTC	1	2
BRCA2	c.3068dup	FS	NMD	PTC	1	1
BRCA2	c.306dup	FS	NMD	PTC	1	1
BRCA2	c.3075_3076delinsTT	MS/FS	NMD	PTC	1	1
BRCA2	c. $3076 \mathrm{~A}>$ T	NS	NMD	PTC	1	2
BRCA2	c.3100dup	FS	NMD	PTC	1	1
BRCA2	c.3103G>T	NS	NMD	PTC	1	10
BRCA2	c.3109C>T	NS	NMD	PTC	1	32
BRCA2	c.3146del	FS	NMD	PTC	1	1
BRCA2	c. $314 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	10
BRCA2	c.3150_3153delinsATTTT	FS	NMD	PTC	1	1
BRCA2	c.3158T>G	NS	NMD	PTC	1	12
BRCA2	c. $316+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	1
BRCA2	c. $316+1 \mathrm{G}>\mathrm{C}$	S	unknown	Unknown	3	3
BRCA2	c. $316+2 \mathrm{~T}>\mathrm{G}$	S	unknown	Unknown	3	1
BRCA2	c.3160_3163del	FS	NMD	PTC	1	8
BRCA2	c. $3166 \mathrm{C}>$ T	NS	NMD	PTC	1	2
BRCA2	c.3167_3170del	FS	NMD	PTC	1	2
BRCA2	c.317-?_425+?dup	DP	unknown	Unknown	3	1
BRCA2	c.317-?_631+?del	DL	unknown	Unknown	3	1
BRCA2	c.3170_3174del	FS	NMD	PTC	1	19
BRCA2	c.3171_3172del	FS	NMD	PTC	1	2
BRCA2	c. $3172 A>T$	NS	NMD	PTC	1	4
BRCA2	c. $3187 C>T$	NS	NMD	PTC	1	3
BRCA2	c.3189_3192del	FS	NMD	PTC	1	5
BRCA2	c.3195_3198del	FS	NMD	PTC	1	7
BRCA2	c.3195del	FS	NMD	PTC	1	1
BRCA2	c.3199del	FS	NMD	PTC	1	19
BRCA2	c.3202del	FS	NMD	PTC	1	1
BRCA2	c.3217C>T	NS	NMD	PTC	1	1
BRCA2	c.3226_3230del	FS	NMD	PTC	1	2
BRCA2	c. $3244 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA2	c.3248del	FS	NMD	PTC	1	1
BRCA2	c.3248dup	FS	NMD	PTC	1	1
BRCA2	c.3264dup	FS	NMD	PTC	1	102
BRCA2	c. $3265 C>T$	NS	NMD	PTC	1	1
BRCA2	c.3267_3268del	FS	NMD	PTC	1	1
BRCA2	c.3269del	FS	NMD	PTC	1	1
BRCA2	c.3277del	FS	NMD	PTC	1	1
BRCA2	c.3283C>T	NS	NMD	PTC	1	1
BRCA2	c.3283del	FS	NMD	PTC	1	1
BRCA2	c. $3296 C>A$	NS	NMD	PTC	1	5
BRCA2	c.3303_3336dup	FS	NMD	PTC	1	1
BRCA2	c.3319C>T	NS	NMD	PTC	1	3
BRCA2	c.3335del	FS	NMD	PTC	1	1
BRCA2	c.3337_3338del	FS	NMD	PTC	1	1
BRCA2	c.3346_3347del	FS	NMD	PTC	1	1
BRCA2	c.3352_3356del	FS	NMD	PTC	1	1
BRCA2	c.3353_3355del	FS	NMD	PTC	1	2
BRCA2	c.3354del	FS	NMD	PTC	1	2
BRCA2	c.3362C>G	NS	NMD	PTC	1	3
BRCA2	c. $3405 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	10
BRCA2	c.3407_3408ins(100)	FS	NMD	PTC	1	1

BRCA2 c.3409_3421del	FS	NMD	PTC	1	1
BRCA2 c.3412C>T	NS	NMD	PTC	1	2
BRCA2 c.3422del	FS	NMD	PTC	1	1
BRCA2 c.3442C>T	NS	NMD	PTC	1	2
BRCA2 c.3451_3452del	FS	NMD	PTC	1	1
BRCA2 c.3452dup	FS	NMD	PTC	1	1
BRCA2 c.3453del	FS	NMD	PTC	1	1
BRCA2 c.3455T>A	NS	NMD	PTC	1	1
BRCA2 c.3455T>G	NS	NMD	PTC	1	4
BRCA2 c.3458del	FS	NMD	PTC	1	2
BRCA2 c.3465_3466del	FS	NMD	PTC	1	2
BRCA2 c.3481_3482dup	FS	NMD	PTC	1	1
BRCA2 c.3487del	FS	NMD	PTC	1	1
BRCA2 c.3489del	FS	NMD	PTC	1	1
BRCA2 c.3492dup	FS	NMD	PTC	1	1
BRCA2 c.3497del	FS	NMD	PTC	1	1
BRCA2 c.3500_3501del	FS	NMD	PTC	1	2
BRCA2 c.3502dup	FS	NMD	PTC	1	1
BRCA2 c.3523C>T	NS	NMD	PTC	1	1
BRCA2 c.3530_3533del	FS	NMD	PTC	1	5
BRCA2 c.3545_3546del	FS	NMD	PTC	1	29
BRCA2 c.3554_3555del	FS	NMD	PTC	1	1
BRCA2 c.3564_3567del	FS	NMD	PTC	1	1
BRCA2 c.3570del	FS	NMD	PTC	1	2
BRCA2 c.3593dup	FS	NMD	PTC	1	1
BRCA2 c.3596_3599del	FS	NMD	PTC	1	1
BRCA2 c.3599_3600del	FS	NMD	PTC	1	32
BRCA2 c.3603del	FS	NMD	PTC	1	1
BRCA2 c.3631G>T	NS	NMD	PTC	1	1
BRCA2 c.3637del	FS	NMD	PTC	1	2
BRCA2 c.3641dup	FS	NMD	PTC	1	1
BRCA2 c.3645_3646delinsTAAAAAG	FS	NMD	PTC	1	3
BRCA2 c.3680_3681del	FS	NMD	PTC	1	14
BRCA2 c.3682_3685del	FS	NMD	PTC	1	1
BRCA2 c.3685_3686del	FS	NMD	PTC	1	1
BRCA2 c.3689del	FS	NMD	PTC	1	10
BRCA2 c.368_372del	FS	NMD	PTC	1	1
BRCA2 c.36dup	FS	NMD	PTC	1	3
BRCA2 c.3708dup	FS	NMD	PTC	1	2
BRCA2 c.370_374del	FS	NMD	PTC	1	1
BRCA2 c.370del	FS	NMD	PTC	1	6
BRCA2 c.3717del	FS	NMD	PTC	1	6
BRCA2 c.3723_3725delinsAT	FS	NMD	PTC	1	1
BRCA2 c.3723del	FS	NMD	PTC	1	2
BRCA2 c.3724dup	FS	NMD	PTC	1	1
BRCA2 c.3728dup	FS	NMD	PTC	1	1
BRCA2 c.3739del	FS	NMD	PTC	1	5
BRCA2 c.3741del	FS	NMD	PTC	1	2
BRCA2 c.3744_3747del	FS	NMD	PTC	1	50
BRCA2 c.3751dup	FS	NMD	PTC	1	1
BRCA2 c.3772del	FS	NMD	PTC	1	2
BRCA2 c.3778_3779del	FS	NMD	PTC	1	2
BRCA2 c.3779del	FS	NMD	PTC	1	1
BRCA2 c.3779dup	FS	NMD	PTC	1	1
BRCA2 c.3785C>G	NS	NMD	PTC	1	10
BRCA2 c.37G>T	NS	NMD	PTC	1	6
BRCA2 c.37_44del	FS	NMD	PTC	1	2

1
2

BRCA2	c. $3812 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA2	c.3814_3815insC	FS	NMD	PTC	1	3
BRCA2	c.3819dup	FS	NMD	PTC	1	1
BRCA2	c.3824_3827del	FS	NMD	PTC	1	1
BRCA2	c.3829_3830del	FS	NMD	PTC	1	1
BRCA2	c.3837del	FS	NMD	PTC	1	1
BRCA2	c.3847_3848del	FS	NMD	PTC	1	164
BRCA2	c. 3847 del	FS	NMD	PTC	1	9
BRCA2	c.3849_3852del	FS	NMD	PTC	1	1
BRCA2	c.3860_3863del	FS	NMD	PTC	1	1
BRCA2	c.3860del	FS	NMD	PTC	1	29
BRCA2	c.3860dup	FS	NMD	PTC	1	6
BRCA2	c.3861_3864del	FS	NMD	PTC	1	2
BRCA2	c.3865_3868del	FS	NMD	PTC	1	16
BRCA2	c.3866_3867del	FS	NMD	PTC	1	1
BRCA2	c.3866_3869del	FS	NMD	PTC	1	2
BRCA2	c.3867dup	FS	NMD	PTC	1	1
BRCA2	c.3871C>T	NS	NMD	PTC	1	1
BRCA2	c.3873del	FS	NMD	PTC	1	2
BRCA2	c.3881T>G	NS	NMD	PTC	1	3
BRCA2	c.3915del	FS	NMD	PTC	1	12
BRCA2	c.3919del	FS	NMD	PTC	1	1
BRCA2	c.391del	FS	NMD	PTC	1	1
BRCA2	c.3920_3941del	FS	NMD	PTC	1	1
BRCA2	c.3922G>T	NS	NMD	PTC	1	31
BRCA2	c.3936_3954del	FS	NMD	PTC	1	2
BRCA2	c.3939C>A	NS	NMD	PTC	1	4
BRCA2	c.3957_3958del	FS	NMD	PTC	1	1
BRCA2	c.3967A>T	NS	NMD	PTC	1	2
BRCA2	c.3968_3971del	FS	NMD	PTC	1	1
BRCA2	c. $396 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	4
BRCA2	c.3972_3973del	FS	NMD	PTC	1	1
BRCA2	c.3972_3975del	FS	NMD	PTC	1	1
BRCA2	c.3975_3978dup	FS	NMD	PTC	1	10
BRCA2	c.3978_3979insTTGC	FS	NMD	PTC	1	10
BRCA2	c.3G>A	MS	unknown	Unknown	3	11
BRCA2	c.3del	FS	unknown	Unknown	3	6
BRCA2	c. $4001 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	2
BRCA2	c.4003G>T	NS	NMD	PTC	1	4
BRCA2	c.4005dup	FS	NMD	PTC	1	1
BRCA2	c.4014_4015insGG	FS	NMD	PTC	1	1
BRCA2	c.4021del	FS	NMD	PTC	1	1
BRCA2	c.4021dup	FS	NMD	PTC	1	1
BRCA2	c.4030_4035delinsC	FS	NMD	PTC	1	6
BRCA2	c.4037_4038del	FS	NMD	PTC	1	8
BRCA2	c.4042dup	FS	NMD	PTC	1	1
BRCA2	c.4051A>T	NS	NMD	PTC	1	1
BRCA2	c.4058_4062del	FS	NMD	PTC	1	1
BRCA2	c.4076del	FS	NMD	PTC	1	1
BRCA2	c.407del	FS	NMD	PTC	1	7
BRCA2	c.4092dup	FS	NMD	PTC	1	1
BRCA2	c.4095del	FS	NMD	PTC	1	3
BRCA2	c.4098_4099insCATC	FS	NMD	PTC	1	1
BRCA2	c.4101del	FS	NMD	PTC	1	1
BRCA2	c.4111C>T	NS	NMD	PTC	1	4
BRCA2	c.4121del	FS	NMD	PTC	1	1
BRCA2	c.4124del	FS	NMD	PTC	1	1

BRCA2	c.4127_4130del	FS	NMD	PTC	1	4
BRCA2	c.4131_4132insTGAGGA	FS	NMD	PTC	1	17
BRCA2	c.4133_4136del	FS	NMD	PTC	1	7
BRCA2	c.4137_4141del	FS	NMD	PTC	1	2
BRCA2	c.4146_4149del	FS	NMD	PTC	1	1
BRCA2	c. $4151 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA2	c. $4154 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA2	c.4163_4164delinsA	FS	NMD	PTC	1	20
BRCA2	c.4168_4169del	FS	NMD	PTC	1	1
BRCA2	c.4169del	FS	NMD	PTC	1	9
BRCA2	c.4169dup	FS	NMD	PTC	1	1
BRCA2	c.4171del	FS	NMD	PTC	1	4
BRCA2	c.4188del	FS	NMD	PTC	1	4
BRCA2	c.4211C>G	NS	NMD	PTC	1	2
BRCA2	c.4211_4215del	FS	NMD	PTC	1	1
BRCA2	c.4211del	FS	NMD	PTC	1	2
BRCA2	c. $4222 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	14
BRCA2	c.4223del	FS	NMD	PTC	1	1
BRCA2	c.4229_4230insA	FS	NMD	PTC	1	1
BRCA2	c. $4243 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA2	c. $425+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	2
BRCA2	c.4258del	FS	NMD	PTC	1	18
BRCA2	c.425G>A	MS/FS	NMD	PTC	1	2
BRCA2	c.426-2A>G	S	unknown	Unknown	3	1
BRCA2	c. $426-2 A>T$	S	unknown	Unknown	3	1
BRCA2	c.426-6_438del	S	unknown	Unknown	3	1
BRCA2	c.426-?_631+?del	DL	unknown	Unknown	3	2
BRCA2	c.426-?_6841+?dup	DP	unknown	Unknown	3	3
BRCA2	c.4264_4270del	FS	NMD	PTC	1	1
BRCA2	c.4271del	FS	NMD	PTC	1	1
BRCA2	c.4276dup	FS	NMD	PTC	1	5
BRCA2	c.4277del	FS	NMD	PTC	1	2
BRCA2	c.4284dup	FS	NMD	PTC	1	31
BRCA2	c.4285_4286insT	FS	NMD	PTC	1	1
BRCA2	c.428dup	FS	NMD	PTC	1	5
BRCA2	c.4304del	FS	NMD	PTC	1	1
BRCA2	c. 4305 del	FS	NMD	PTC	1	2
BRCA2	c.4306_4307del	FS	NMD	PTC	1	3
BRCA2	c. 4314 del	FS	NMD	PTC	1	3
BRCA2	c.4319_4320del	FS	NMD	PTC	1	2
BRCA2	c. $4325 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	2
BRCA2	c.4334_4338del	FS	NMD	PTC	1	1
BRCA2	c.433_437del	FS	NMD	PTC	1	1
BRCA2	c.4366G>T	NS	NMD	PTC	1	1
BRCA2	c.4380_4381del	FS	NMD	PTC	1	2
BRCA2	c.4385dup	FS	NMD	PTC	1	1
BRCA2	c.438del	FS	NMD	PTC	1	1
BRCA2	c.4397T>A	NS	NMD	PTC	1	1
BRCA2	c.4398_4402del	FS	NMD	PTC	1	9
BRCA2	c.439C>T	NS	NMD	PTC	1	1
BRCA2	c.4402_4403insA	FS	NMD	PTC	1	1
BRCA2	c.4404dup	FS	NMD	PTC	1	1
BRCA2	c.4405_4409del	FS	NMD	PTC	1	6
BRCA2	c.4409_4413del	FS	NMD	PTC	1	1
BRCA2	c.4414_4415del	FS	NMD	PTC	1	2
BRCA2	c.4415_4418del	FS	NMD	PTC	1	10
BRCA2	c.441del	FS	NMD	PTC	1	1

1
2

BRCA2	c.4424dup	FS	NMD	PTC	1	2
BRCA2	c.4429del	FS	NMD	PTC	1	1
BRCA2	c.4440T>G	NS	NMD	PTC	1	4
BRCA2	c.4449del	FS	NMD	PTC	1	28
BRCA2	c.4456_4459del	FS	NMD	PTC	1	3
BRCA2	c.4458del	FS	NMD	PTC	1	1
BRCA2	c.4460_4461del	FS	NMD	PTC	1	1
BRCA2	c.4467_4474delinsTGTTTTT	FS	NMD	PTC	1	3
BRCA2	c.4472_4475del	FS	NMD	PTC	1	6
BRCA2	c.4476dup	FS	NMD	PTC	1	1
BRCA2	c.4478_4481del	FS	NMD	PTC	1	73
BRCA2	c.4480dup	FS	NMD	PTC	1	1
BRCA2	c.4519del	FS	NMD	PTC	1	1
BRCA2	c. $4525 \mathrm{C}>$ T	NS	NMD	PTC	1	1
BRCA2	c.4530del	FS	NMD	PTC	1	1
BRCA2	c.4533del	FS	NMD	PTC	1	1
BRCA2	c.4535del	FS	NMD	PTC	1	1
BRCA2	c.4539_4540ins(4)	FS	NMD	PTC	1	1
BRCA2	c.4540_4541insCGAT	FS	NMD	PTC	1	1
BRCA2	c.4551_4554del	FS	NMD	PTC	1	1
BRCA2	c.4552G>T	NS	NMD	PTC	1	1
BRCA2	c.4552del	FS	NMD	PTC	1	8
BRCA2	c.4554del	FS	NMD	PTC	1	9
BRCA2	c.4556del	FS	NMD	PTC	1	2
BRCA2	c.4563_4564del	FS	NMD	PTC	1	3
BRCA2	c.4576dup	FS	NMD	PTC	1	2
BRCA2	c. $4588 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	5
BRCA2	c.4593dup	FS	NMD	PTC	1	2
BRCA2	c.4615_4616del	FS	NMD	PTC	1	1
BRCA2	c.462_463del	FS	NMD	PTC	1	13
BRCA2	c.4631del	FS	NMD	PTC	1	12
BRCA2	c.4631dup	FS	NMD	PTC	1	9
BRCA2	c.4638_4640delinsGG	FS	NMD	PTC	1	1
BRCA2	c.4638del	FS	NMD	PTC	1	17
BRCA2	c.4647_4650del	FS	NMD	PTC	1	3
BRCA2	c.4648G>T	NS	NMD	PTC	1	1
BRCA2	c.466_467del	FS	NMD	PTC	1	1
BRCA2	c.4691dup	FS	NMD	PTC	1	1
BRCA2	c.469_470del	FS	NMD	PTC	1	12
BRCA2	c.470_474del	FS	NMD	PTC	1	7
BRCA2	c.470del	FS	NMD	PTC	1	1
BRCA2	c.470dup	FS	NMD	PTC	1	1
BRCA2	c.4712_4713del	FS	NMD	PTC	1	2
BRCA2	c.471_472insA	FS	NMD	PTC	1	3
BRCA2	c.4722dup	FS	NMD	PTC	1	2
BRCA2	c. $473 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA2	c.4740_4741dup	FS	NMD	PTC	1	1
BRCA2	c.4741delinsAA	FS	NMD	PTC	1	1
BRCA2	c. $475+1 \mathrm{G}>\mathrm{A}$	S	NMD	PTC	1	2
BRCA2	c. $475+1 \mathrm{G}>\mathrm{T}$	S	NMD	PTC	1	8
BRCA2	c. $475+3 A>G$	S	NMD	PTC	1	1
BRCA2	c. $475+3 A>T$	S	NMD	PTC	1	1
BRCA2	c. $475 \mathrm{G}>\mathrm{A}$	MS/S	unknown	PTC	3	2
BRCA2	c. $476-2 A>C$	S	NMD	PTC	1	3
BRCA2	c. $476-2 A>G$	S	NMD	PTC	1	8
BRCA2	c.476-4_476-1del	S	NMD	PTC	1	1
BRCA2	c.4766del	FS	NMD	PTC	1	1

BRCA2	c.4780del	FS	NMD	PTC	1	2
BRCA2	c. $4783 \mathrm{C}>$ T	NS	NMD	PTC	1	1
BRCA2	c. 4797 del	FS	NMD	PTC	1	1
BRCA2	c.4799del	FS	NMD	PTC	1	1
BRCA2	c.4808del	FS	NMD	PTC	1	2
BRCA2	c.4828dup	FS	NMD	PTC	1	2
BRCA2	c.4829_4830del	FS	NMD	PTC	1	7
BRCA2	c.4853delinsGCTCT	FS	NMD	PTC	1	1
BRCA2	c.4859T>G	NS	NMD	PTC	1	1
BRCA2	c.4876_4877del	FS	NMD	PTC	1	26
BRCA2	c. $4889 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	35
BRCA2	c.4894_4895del	FS	NMD	PTC	1	1
BRCA2	c.48_50delinsATCGATCGAT	FS	NMD	PTC	1	1
BRCA2	c.4904dup	FS	NMD	PTC	1	1
BRCA2	c. $4912 \mathrm{~A}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA2	c.4930_4937del	FS	NMD	PTC	1	1
BRCA2	c.4935del	FS	NMD	PTC	1	9
BRCA2	c.4936_4939del	FS	NMD	PTC	1	35
BRCA2	c.4939dup	FS	NMD	PTC	1	1
BRCA2	c.4940_4941del	FS	NMD	PTC	1	4
BRCA2	c.4947_4948del	FS	NMD	PTC	1	2
BRCA2	c.4952del	FS	NMD	PTC	1	1
BRCA2	c.4960dup	FS	NMD	PTC	1	2
BRCA2	c.4963del	FS	NMD	PTC	1	4
BRCA2	c.4964dup	FS	NMD	PTC	1	3
BRCA2	c.4965C>A	NS	NMD	PTC	1	2
BRCA2	c. $4965 C>A / G$	NS	NMD	PTC	1	2
BRCA2	c. $4965 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	26
BRCA2	c.4965del	FS	NMD	PTC	1	3
BRCA2	c.4981del	FS	NMD	PTC	1	1
BRCA2	c. $4985 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA2	c.5016C>G	NS	NMD	PTC	1	2
BRCA2	c.5035del	FS	NMD	PTC	1	3
BRCA2	c.5039_5040del	FS	NMD	PTC	1	1
BRCA2	c.5042_5043del	FS	NMD	PTC	1	4
BRCA2	c.5049_5050del	FS	NMD	PTC	1	1
BRCA2	c.5050_5065del	FS	NMD	PTC	1	1
BRCA2	c.506del	FS	NMD	PTC	1	1
BRCA2	c.5073dup	FS	NMD	PTC	1	63
BRCA2	c.5080A>T	NS	NMD	PTC	1	1
BRCA2	c.5086_5087insA	FS	NMD	PTC	1	1
BRCA2	c.5101C>T	FS	NMD	PTC	1	1
BRCA2	c.5110_5113del	FS	NMD	PTC	1	2
BRCA2	c.5110del	FS	NMD	PTC	1	1
BRCA2	c.5115_5119delinsG	FS	NMD	PTC	1	1
BRCA2	c.5116_5119del	FS	NMD	PTC	1	14
BRCA2	c.5119_5122del	FS	NMD	PTC	1	1
BRCA2	c.5119dup	FS	NMD	PTC	1	2
BRCA2	c.5125_5129del	FS	NMD	PTC	1	1
BRCA2	c.5130_5133del	FS	NMD	PTC	1	22
BRCA2	c.5141_5144del	FS	NMD	PTC	1	7
BRCA2	c.5146_5149del	FS	NMD	PTC	1	15
BRCA2	c.5154_5158del	FS	NMD	PTC	1	1
BRCA2	c.5157_5161del	FS	NMD	PTC	1	2
BRCA2	c.5158dup	FS	NMD	PTC	1	11
BRCA2	c.5159C>G	NS	NMD	PTC	1	1
BRCA2	c. $516+1 \mathrm{G}>\mathrm{A}$	S	unkn	Unk	3	3

BRCA2	c. $516+1 \mathrm{G}>\mathrm{C}$	S	unknown	Unknown	3	2
BRCA2	c. $516+1 \mathrm{G}>\mathrm{T}$	S	unknown	Unknown	3	24
BRCA2	c.516+1del	S	unknown	Unknown	3	1
BRCA2	c. $516+2 \mathrm{~T}>\mathrm{A}$	S	unknown	Unknown	3	3
BRCA2	c.5160_5168delinsTACAA	FS	NMD	PTC	1	1
BRCA2	c.5161_5169delins(5)	FS	NMD	PTC	1	1
BRCA2	c.5164_5165del	FS	NMD	PTC	1	13
BRCA2	c.516G>A	S	unknown	Unknown	3	7
BRCA2	c.517-1G>A	S	unknown	Unknown	3	1
BRCA2	c.517-1G>T	S	unknown	Unknown	3	1
BRCA2	c.517-2A>G	S	unknown	Unknown	3	16
BRCA2	c.5170dup	FS	NMD	PTC	1	1
BRCA2	c.517G>C	MS/S	unknown	Unknown	3	1
BRCA2	c.5180del	FS	NMD	PTC	1	1
BRCA2	c.5180dup	FS	NMD	PTC	1	1
BRCA2	c.518del	FS	NMD	PTC	1	3
BRCA2	c.5195del	FS	NMD	PTC	1	1
BRCA2	c.5197dup	FS	NMD	PTC	1	1
BRCA2	c.5198_5199dup	FS	NMD	PTC	1	1
BRCA2	c.51_52del	FS	NMD	PTC	1	5
BRCA2	c.51dup	FS	NMD	PTC	1	1
BRCA2	c.5205del	FS	NMD	PTC	1	1
BRCA2	c.5207_5208del	FS	NMD	PTC	1	1
BRCA2	c.5208del	FS	NMD	PTC	1	2
BRCA2	c.5213_5216del	FS	NMD	PTC	1	35
BRCA2	c.5213del	FS	NMD	PTC	1	1
BRCA2	c.5216dup	FS	NMD	PTC	1	2
BRCA2	c.5217T>A	NS	NMD	PTC	1	2
BRCA2	c.5217_5218delinsA	FS	NMD	PTC	1	1
BRCA2	c.5217_5220del	FS	NMD	PTC	1	4
BRCA2	c.5217_5221del	FS	NMD	PTC	1	2
BRCA2	c.5217_5223del	FS	NMD	PTC	1	11
BRCA2	c.5217_5224del	FS	NMD	PTC	1	2
BRCA2	c.5218_5224del	FS	NMD	PTC	1	1
BRCA2	c.5219del	FS	NMD	PTC	1	2
BRCA2	c.5219dup	FS	NMD	PTC	1	1
BRCA2	c.5222_5225del	FS	NMD	PTC	1	6
BRCA2	c.5238dup	FS	NMD	PTC	1	34
BRCA2	c.5239_5240insT	FS	NMD	PTC	1	2
BRCA2	c.5241_5242insTA	FS	NMD	PTC	1	1
BRCA2	c.5254del	FS	NMD	PTC	1	1
BRCA2	c.5263G>T	NS	NMD	PTC	1	1
BRCA2	c.5270_5273del	FS	NMD	PTC	1	1
BRCA2	c.5270_5286del	FS	NMD	PTC	1	2
BRCA2	c.5279C>G	NS	NMD	PTC	1	10
BRCA2	c. $5281 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	1
BRCA2	c.5286T>A	NS	NMD	PTC	1	4
BRCA2	c.5290_5291del	FS	NMD	PTC	1	3
BRCA2	c.5298del	FS	NMD	PTC	1	1
BRCA2	c.52_61del	FS	NMD	PTC	1	1
BRCA2	c.5303_5304del	FS	NMD	PTC	1	16
BRCA2	c.5303_5311delinsA	FS	NMD	PTC	1	1
BRCA2	c.5329_5334delinsG	FS	NMD	PTC	1	1
BRCA2	c.5334_5340del	FS	NMD	PTC	1	1
BRCA2	c.5338dup	FS	NMD	PTC	1	1
BRCA2	c.5344C>T	NS	NMD	PTC	1	4
BRCA2	c.5350_5351del	FS	NMD	PTC	1	61

BRCA2	c.5350_5351delinsT	FS	NMD	PTC	1	2
BRCA2	c.5350_5351dup	FS	NMD	PTC	1	2
BRCA2	c.5351del	FS	NMD	PTC	1	15
BRCA2	c.5351dup	FS	NMD	PTC	1	25
BRCA2	c.5352del	FS	NMD	PTC	1	3
BRCA2	c.5353_5354del	FS	NMD	PTC	1	1
BRCA2	c.5353del	FS	NMD	PTC	1	1
BRCA2	c.5355dup	FS	NMD	PTC	1	1
BRCA2	c.5357del	FS	NMD	PTC	1	1
BRCA2	c.5365A>T	NS	NMD	PTC	1	1
BRCA2	c.5378del	FS	NMD	PTC	1	1
BRCA2	c.538_539del	FS	NMD	PTC	1	2
BRCA2	c.538_539dup	FS	NMD	PTC	1	20
BRCA2	c.5410_5411del	FS	NMD	PTC	1	20
BRCA2	c.541del	FS	NMD	PTC	1	3
BRCA2	c.5434G>T	NS	NMD	PTC	1	1
BRCA2	c.5442_5445dup	FS	NMD	PTC	1	1
BRCA2	c.5459_5460dup	FS	NMD	PTC	1	1
BRCA2	c.5471del	FS	NMD	PTC	1	3
BRCA2	c.5471dup	FS	NMD	PTC	1	1
BRCA2	c.5472_5473insA	FS	NMD	PTC	1	3
BRCA2	c.5482_5486del	FS	NMD	PTC	1	5
BRCA2	c.5542del	FS	NMD	PTC	1	6
BRCA2	c.5550_5551del	FS	NMD	PTC	1	2
BRCA2	c.5550_5566delinsTTGGCT	FS	NMD	PTC	1	1
BRCA2	c.5557del	FS	NMD	PTC	1	2
BRCA2	c.5560_5561del	FS	NMD	PTC	1	3
BRCA2	c.5564C>A	NS	NMD	PTC	1	1
BRCA2	c.5569G>T	NS	NMD	PTC	1	3
BRCA2	c.5569_5573del	FS	NMD	PTC	1	3
BRCA2	c.5576_5579del	FS	NMD	PTC	1	57
BRCA2	c.5577_5580del	FS	NMD	PTC	1	1
BRCA2	c.5577del	FS	NMD	PTC	1	1
BRCA2	c.5580_5583del	FS	NMD	PTC	1	19
BRCA2	c.5583dup	FS	NMD	PTC	1	1
BRCA2	c.5585_5588del	FS	NMD	PTC	1	2
BRCA2	c.5590_5591del	FS	NMD	PTC	1	2
BRCA2	c.5592_5593del	FS	NMD	PTC	1	1
BRCA2	c.5595_5596del	FS	NMD	PTC	1	3
BRCA2	c.5603_5606del	FS	NMD	PTC	1	1
BRCA2	c.5609_5610delinsAG	NS	NMD	PTC	1	14
BRCA2	c.5609dup	FS	NMD	PTC	1	1
BRCA2	c.5614A>T	NS	NMD	PTC	1	9
BRCA2	c.5616_5620del	FS	NMD	PTC	1	9
BRCA2	c.5616del	FS	NMD	PTC	1	1
BRCA2	c.5621_5624del	FS	NMD	PTC	1	22
BRCA2	c.5623A>T	NS	NMD	PTC	1	1
BRCA2	c.5624del	FS	NMD	PTC	1	1
BRCA2	c. $5635 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA2	c.5641_5644del	FS	NMD	PTC	1	14
BRCA2	c. $5645 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	100
BRCA2	c. $5645 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	7
BRCA2	c.5651_5652insA	FS	NMD	PTC	1	1
BRCA2	c.5653dup	FS	NMD	PTC	1	1
BRCA2	c.5655C>A	NS	NMD	PTC	1	6
BRCA2	c.5656C>T	NS	NMD	PTC	1	8
BRCA2	c.5665del	FS	NMD	PTC	1	1

1
2

BRCA2	c.5669_5673del	FS	NMD	PTC	1	3
BRCA2	c.566_567insG	FS	NMD	PTC	1	1
BRCA2	c.5677_5678insA	FS	NMD	PTC	1	1
BRCA2	c.5681dup	FS	NMD	PTC	1	23
BRCA2	c.5682C>A	NS	NMD	PTC	1	4
BRCA2	c.5682C>A/G	NS	NMD	PTC	1	2
BRCA2	c.5682C>G	NS	NMD	PTC	1	144
BRCA2	c.568_575del	FS	NMD	PTC	1	1
BRCA2	c.5692del	FS	NMD	PTC	1	2
BRCA2	c.5699C>A	NS	NMD	PTC	1	1
BRCA2	c.5701_5714del	FS	NMD	PTC	1	1
BRCA2	c.5702_5703del	FS	NMD	PTC	1	1
BRCA2	c.5720_5723del	FS	NMD	PTC	1	10
BRCA2	c.5722_5723del	FS	NMD	PTC	1	104
BRCA2	c.5723_5724del	FS	NMD	PTC	1	5
BRCA2	c.572delinsCT	FS	NMD	PTC	1	3
BRCA2	c.5734G>T	NS	NMD	PTC	1	2
BRCA2	c.574_575del	FS	NMD	PTC	1	26
BRCA2	c.5750C>A	NS	NMD	PTC	1	1
BRCA2	c.5754_5755del	FS	NMD	PTC	1	6
BRCA2	c.5763dup	FS	NMD	PTC	1	5
BRCA2	c.5771_5774del	FS	NMD	PTC	1	5
BRCA2	c.5778_5779del	FS	NMD	PTC	1	1
BRCA2	c.5782G>T	NS	NMD	PTC	1	4
BRCA2	c.5789T>A	NS	NMD	PTC	1	1
BRCA2	c.5789del	FS	NMD	PTC	1	2
BRCA2	c.5791C>T	NS	NMD	PTC	1	2
BRCA2	c.5796_5797del	FS	NMD	PTC	1	35
BRCA2	c.5799_5802del	FS	NMD	PTC	1	5
BRCA2	c.5800C>T	NS	NMD	PTC	1	1
BRCA2	c.5809_5812del	FS	NMD	PTC	1	2
BRCA2	c.5811_5812del	FS	NMD	PTC	1	1
BRCA2	c.581G>A	NS	NMD	PTC	1	5
BRCA2	c.5823del	FS	NMD	PTC	1	3
BRCA2	c.5828del	FS	NMD	PTC	1	9
BRCA2	c.582G>A	NS	NMD	PTC	1	2
BRCA2	c.5835_5842dup	FS	NMD	PTC	1	9
BRCA2	c.5835dup	FS	NMD	PTC	1	1
BRCA2	c.583del	FS	NMD	PTC	1	1
BRCA2	c.584C>G	NS	NMD	PTC	1	1
BRCA2	c.5851_5854del	FS	NMD	PTC	1	27
BRCA2	c.5855T>A	NS	NMD	PTC	1	1
BRCA2	c.5855_5856insAGTT	FS	NMD	PTC	1	1
BRCA2	c.5857G>T	NS	NMD	PTC	1	50
BRCA2	c.5862_5863del	FS	NMD	PTC	1	1
BRCA2	c.5863del	FS	NMD	PTC	1	1
BRCA2	c.5864C>A	NS	NMD	PTC	1	30
BRCA2	c.5898del	FS	NMD	PTC	1	3
BRCA2	c.5904_5907del	FS	NMD	PTC	1	11
BRCA2	c.5904dup	FS	NMD	PTC	1	1
BRCA2	c.5909C>A	NS	NMD	PTC	1	59
BRCA2	c.5918del	FS	NMD	PTC	1	1
BRCA2	c.5934dup	FS	NMD	PTC	1	2
BRCA2	c.5945dup	FS	NMD	PTC	1	1
BRCA2	c.5946del	FS	NMD	PTC	1	1376
BRCA2	c.5948del	FS	NMD	PTC	1	1
BRCA2	c.594_598dup	FS	NMD	PTC	1	1

BRCA2 c.5959C>T	NS	NMD	PTC	1	1
BRCA2 c.595_598del	FS	NMD	PTC	1	1
BRCA2 c.5966C>G	NS	NMD	PTC	1	1
BRCA2 c.5966dup	FS	NMD	PTC	1	1
BRCA2 c.5967dup	FS	NMD	PTC	1	1
BRCA2 c.5969del	FS	NMD	PTC	1	1
BRCA2 c.596_6540del	DL	unknown	Unknown	3	1
BRCA2 c.5975C>G	NS	NMD	PTC	1	1
BRCA2 c.5980C>T	NS	NMD	PTC	1	3
BRCA2 c.5984dup	FS	NMD	PTC	1	3
BRCA2 c.5985_5986insA	FS	NMD	PTC	1	4
BRCA2 c.5992C>T	NS	NMD	PTC	1	1
BRCA2 c.5993_5994del	FS	NMD	PTC	1	5
BRCA2 c.5994del	FS	NMD	PTC	1	1
BRCA2 c.5del	FS	NMD	PTC	1	1
BRCA2 c.6010_6014del	FS	NMD	PTC	1	1
BRCA2 c.6011_6017del	FS	NMD	PTC	1	1
BRCA2 c.6012_6016del	FS	NMD	PTC	1	1
BRCA2 c.6016_6019del	FS	NMD	PTC	1	1
BRCA2 c.6024dup	FS	NMD	PTC	1	13
BRCA2 c.6025C>T	NS	NMD	PTC	1	1
BRCA2 c.6033_6034del	FS	NMD	PTC	1	1
BRCA2 c.6033_6034insGT	FS	NMD	PTC	1	1
BRCA2 $\mathrm{c} .6037 \mathrm{~A}>$ T	NS	NMD	PTC	1	33
BRCA2 c.6039del	FS	NMD	PTC	1	2
BRCA2 c.6048del	FS	NMD	PTC	1	2
BRCA2 c.6049A>T	NS	NMD	PTC	1	1
BRCA2 c.6052_6053del	FS	NMD	PTC	1	1
BRCA2 c.6058G>T	NS	NMD	PTC	1	1
BRCA2 c.6059_6062del	FS	NMD	PTC	1	6
BRCA2 c.6065C>G	NS	NMD	PTC	1	6
BRCA2 c.6067_6076del	FS	NMD	PTC	1	1
BRCA2 c.6070C>T	NS	NMD	PTC	1	1
BRCA2 c.6078_6079del	FS	NMD	PTC	1	7
BRCA2 c.6079dup	FS	NMD	PTC	1	19
BRCA2 c.6081dup	FS	NMD	PTC	1	1
BRCA2 c.6082G>T	NS	NMD	PTC	1	1
BRCA2 c.6082_6083del	FS	NMD	PTC	1	1
BRCA2 c.6082_6086del	FS	NMD	PTC	1	13
BRCA2 c.6085G>T	NS	NMD	PTC	1	5
BRCA2 c.6096dup	FS	NMD	PTC	1	2
BRCA2 c.6099del	FS	NMD	PTC	1	1
BRCA2 c.610del	FS	NMD	PTC	1	1
BRCA2 c.6124C>T	NS	NMD	PTC	1	5
BRCA2 c.6129del	FS	NMD	PTC	1	1
BRCA2 c.6129dup	FS	NMD	PTC	1	3
BRCA2 c.6137_6138del	FS	NMD	PTC	1	1
BRCA2 c.6145del	FS	NMD	PTC	1	1
BRCA2 $\mathrm{c} .6169 \mathrm{G}>$ T	NS	NMD	PTC	1	2
BRCA2 c.6199del	FS	NMD	PTC	1	1
BRCA2 c.6201del	FS	NMD	PTC	1	1
BRCA2 c.6202dup	FS	NMD	PTC	1	1
BRCA2 c.6203_6204insA	FS	NMD	PTC	1	3
BRCA2 $\mathrm{c} .6206 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	4
BRCA2 c.6209_6212del	FS	NMD	PTC	1	14
BRCA2 c.6225dup	FS	NMD	PTC	1	1
BRCA2 c.6240dup	FS	NMD	PTC	1	2

1
2

BRCA2	c.6244G>T	NS	NMD	PTC	1	3
BRCA2	c.6246del	FS	NMD	PTC	1	1
BRCA2	c.6260_6263del	FS	NMD	PTC	1	1
BRCA2	c.6262del	FS	NMD	PTC	1	1
BRCA2	c.6267_6269delinsC	FS	NMD	PTC	1	8
BRCA2	c.6268_6269del	FS	NMD	PTC	1	1
BRCA2	c.6270_6271del	FS	NMD	PTC	1	4
BRCA2	c.6275_6276del	FS	NMD	PTC	1	329
BRCA2	c.6277dup	FS	NMD	PTC	1	1
BRCA2	c.6302del	FS	NMD	PTC	1	2
BRCA2	c.6304_6305del	FS	NMD	PTC	1	1
BRCA2	c.6308C>A	NS	NMD	PTC	1	2
BRCA2	c. $631+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	1
BRCA2	c. $631+2 \mathrm{~T}>\mathrm{A}$	S	unknown	Unknown	3	1
BRCA2	c. $631+2 \mathrm{~T}>\mathrm{G}$	S	NMD	PTC	1	23
BRCA2	c. $631+3 A>G$	S	NMD	PTC	1	2
BRCA2	c. $631+4 \mathrm{~A}>\mathrm{G}$	S	unknown	Unknown	3	1
BRCA2	c.6313del	FS	NMD	PTC	1	2
BRCA2	c. $631 \mathrm{G}>\mathrm{A}$	S	NMD	PTC	1	7
BRCA2	c. $631 \mathrm{G}>\mathrm{C}$	MS/S	unknown	Unknown	3	9
BRCA2	c.632-1G>A	S	unknown	Unknown	3	3
BRCA2	c. 632-2A>G	S	unknown	Unknown	3	7
BRCA2	c.632-2del	S	unknown	Unknown	3	1
BRCA2	c.6320del	FS	NMD	PTC	1	1
BRCA2	c.6325_6326del	FS	NMD	PTC	1	1
BRCA2	c.6331_6332del	FS	NMD	PTC	1	1
BRCA2	c.6332dup	FS	NMD	PTC	1	2
BRCA2	c.6340_6341del	FS	NMD	PTC	1	1
BRCA2	c.6352_6353del	FS	NMD	PTC	1	2
BRCA2	c.6353_6366del	FS	NMD	PTC	1	1
BRCA2	c.6356dup	FS	NMD	PTC	1	1
BRCA2	c.6359C>G	NS	NMD	PTC	1	1
BRCA2	c.635_636del	FS	NMD	PTC	1	12
BRCA2	c.6361_6362del	FS	NMD	PTC	1	6
BRCA2	c.6372_6373dup	FS	NMD	PTC	1	1
BRCA2	c.6373del	FS	NMD	PTC	1	44
BRCA2	c.6373dup	FS	NMD	PTC	1	3
BRCA2	c.6374_6375insA	FS	NMD	PTC	1	3
BRCA2	c.6385G>T	NS	NMD	PTC	1	1
BRCA2	c.6392_6396del	FS	NMD	PTC	1	3
BRCA2	c.6393del	FS	NMD	PTC	1	1
BRCA2	c.6396dup	FS	NMD	PTC	1	3
BRCA2	c.6397dup	FS	NMD	PTC	1	1
BRCA2	c.63del	FS	NMD	PTC	1	2
BRCA2	c.6401_6404del	FS	NMD	PTC	1	1
BRCA2	c.6405_6409del	FS	NMD	PTC	1	72
BRCA2	c.6407_6411del	FS	NMD	PTC	1	2
BRCA2	c.6408_6414del	FS	NMD	PTC	1	8
BRCA2	c.6410del	FS	NMD	PTC	1	1
BRCA2	c.6419del	FS	NMD	PTC	1	1
BRCA2	c.6420_6421insA	FS	NMD	PTC	1	1
BRCA2	c.6428C>G	NS	NMD	PTC	1	1
BRCA2	c.6434_6441del	FS	NMD	PTC	1	1
BRCA2	c.6434del	FS	NMD	PTC	1	1
BRCA2	c.643G>T	NS	NMD	PTC	1	3
BRCA2	c.6443_6444del	FS	NMD	PTC	1	8
BRCA2	c.6444_6447del	FS	NMD	PTC	1	4

BRCA2 c.6444del	FS	NMD	PTC	1	5
BRCA2 c.6444dup	FS	NMD	PTC	1	5
BRCA2 c.6445_6446del	FS	NMD	PTC	1	9
BRCA2 c.6446_6450del	FS	NMD	PTC	1	4
BRCA2 c.6447_6448dup	FS	NMD	PTC	1	6
BRCA2 c.6449_6450del	FS	NMD	PTC	1	2
BRCA2 c.6449_6450insTA	FS	NMD	PTC	1	4
BRCA2 c.6450dup	FS	NMD	PTC	1	6
BRCA2 c.6466_6469del	FS	NMD	PTC	1	2
BRCA2 c.6468_6469del	FS	NMD	PTC	1	51
BRCA2 c.6469C>T	NS	NMD	PTC	1	3
BRCA2 c.6478C>T	NS	NMD	PTC	1	2
BRCA2 c.6485_6486del	FS	NMD	PTC	1	2
BRCA2 c.6486_6489del	FS	NMD	PTC	1	64
BRCA2 c.6490C>T	NS	NMD	PTC	1	1
BRCA2 c.6490_6492delinsGACT	FS	NMD	PTC	1	3
BRCA2 c.6490del	FS	NMD	PTC	1	1
BRCA2 c.6491_6494del	FS	NMD	PTC	1	3
BRCA2 c.6500T>A	NS	NMD	PTC	1	1
BRCA2 c.6502G>T	NS	NMD	PTC	1	1
BRCA2 c.6509_6510del	FS	NMD	PTC	1	3
BRCA2 c.6514_6515del	FS	NMD	PTC	1	2
BRCA2 c.6515C>A	NS	NMD	PTC	1	1
BRCA2 c.6528_6535dup	FS	NMD	PTC	1	1
BRCA2 c.6531_6534del	FS	NMD	PTC	1	3
BRCA2 c.6531dup	FS	NMD	PTC	1	2
BRCA2 c.6532_6533insT	FS	NMD	PTC	1	1
BRCA2 c.6535_6536ins(8)	FS	NMD	PTC	1	3
BRCA2 c.6535_6536insA	FS	NMD	PTC	1	12
BRCA2 c.6541G>T	NS	NMD	PTC	1	1
BRCA2 c.6547G>T	NS	NMD	PTC	1	1
BRCA2 c.6553del	FS	NMD	PTC	1	2
BRCA2 c.6557C>A	NS	NMD	PTC	1	2
BRCA2 c.6557C>G	NS	NMD	PTC	1	2
BRCA2 c.6566del	FS	NMD	PTC	1	1
BRCA2 c.6566dup	FS	NMD	PTC	1	4
BRCA2 c.6575_6588del	FS	NMD	PTC	1	1
BRCA2 c.6580dup	FS	NMD	PTC	1	1
BRCA2 c.6585dup	FS	NMD	PTC	1	1
BRCA2 c.6588_6589del	FS	NMD	PTC	1	8
BRCA2 c.658_659del	FS	NMD	PTC	1	128
BRCA2 c.6591_6592del	FS	NMD	PTC	1	36
BRCA2 c.6591del	FS	NMD	PTC	1	1
BRCA2 c.6596del	FS	NMD	PTC	1	1
BRCA2 c.6600_6601del	FS	NMD	PTC	1	7
BRCA2 c.6601del	FS	NMD	PTC	1	1
BRCA2 c.6602del	FS	NMD	PTC	1	1
BRCA2 c.6625dup	FS	NMD	PTC	1	1
BRCA2 c.6626_6627del	FS	NMD	PTC	1	6
BRCA2 c.6626_6627dup	FS	NMD	PTC	1	1
BRCA2 c.6629_6630del	FS	NMD	PTC	1	4
BRCA2 c.662_663del	FS	NMD	PTC	1	4
BRCA2 c.6634_6637del	FS	NMD	PTC	1	2
BRCA2 c.6641dup	FS	NMD	PTC	1	7
BRCA2 c.6643del	FS	NMD	PTC	1	1
BRCA2 c.6644_6647del	FS	NMD	PTC	1	33
BRCA2 c.6644dup	FS	NMD	PTC	1	3

BRCA2	c. $6645 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA2	c.6645_6648del	FS	NMD	PTC	1	1
BRCA2	c.664_665del	FS	NMD	PTC	1	1
BRCA2	c.6656C>G	NS	NMD	PTC	1	14
BRCA2	c.6658_6661del	FS	NMD	PTC	1	1
BRCA2	c.6658_6662del	FS	NMD	PTC	1	1
BRCA2	c.6663_6664insAAAG	FS	NMD	PTC	1	1
BRCA2	c.6673del	FS	NMD	PTC	1	1
BRCA2	c.6676G>T	NS	NMD	PTC	1	1
BRCA2	c.6676_6677del	FS	NMD	PTC	1	1
BRCA2	c.6678del	FS	NMD	PTC	1	1
BRCA2	c.6682dup	FS	NMD	PTC	1	2
BRCA2	c.6688del	FS	NMD	PTC	1	2
BRCA2	c.6692del	FS	NMD	PTC	1	1
BRCA2	c.6696del	FS	NMD	PTC	1	1
BRCA2	c.6698del	FS	NMD	PTC	1	1
BRCA2	c.67+1154_316+2261del	DL	unknown	Unknown	3	1
BRCA2	c. $67+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	16
BRCA2	c. $67+1 \mathrm{G}>$ T	S	unknown	Unknown	3	2
BRCA2	c.67+1del	S	unknown	Unknown	3	1
BRCA2	c. $67+2 \mathrm{~T}>\mathrm{C}$	S	unknown	Unknown	3	1
BRCA2	c.6715G>T	NS	NMD	PTC	1	1
BRCA2	c.6722_6723dup	FS	NMD	PTC	1	2
BRCA2	c.6724_6725del	FS	NMD	PTC	1	6
BRCA2	c.6727del	FS	NMD	PTC	1	1
BRCA2	c.6730A>T	NS	NMD	PTC	1	1
BRCA2	c.6732del	FS	NMD	PTC	1	1
BRCA2	c.673_676del	FS	NMD	PTC	1	3
BRCA2	c.6743_6755del	FS	NMD	PTC	1	4
BRCA2	c.674del	FS	NMD	PTC	1	1
BRCA2	c.6753_6754del	FS	NMD	PTC	1	1
BRCA2	c.6754dup	FS	NMD	PTC	1	2
BRCA2	c.6757_6758del	FS	NMD	PTC	1	6
BRCA2	c.6761_6762del	FS	NMD	PTC	1	3
BRCA2	c.6763dup	FS	NMD	PTC	1	2
BRCA2	c.6768T>A	NS	NMD	PTC	1	1
BRCA2	c.67G>T	S	unknown	Unknown	3	2
BRCA2	c. $681+4 \mathrm{~A}>\mathrm{G}$	S	NMD	PTC	1	2
BRCA2	c.6814del	FS	NMD	PTC	1	2
BRCA2	c.6815_6816del	FS	NMD	PTC	1	1
BRCA2	c.6816_6817del	FS	NMD	PTC	1	7
BRCA2	c.6816_6820del	FS	NMD	PTC	1	1
BRCA2	c.682-2A>C	S	unknown	Unknown	3	2
BRCA2	c.682-2A>G	S	unknown	Unknown	3	3
BRCA2	c.682-?_1909+?del	DL	unknown	Unknown	3	1
BRCA2	c.682-?_793+?del	DL	unknown	Unknown	3	1
BRCA2	c.6825del	FS	NMD	PTC	1	1
BRCA2	c.6833_6837del	FS	NMD	PTC	1	5
BRCA2	c.6841+1del	S	unknown	Unknown	3	2
BRCA2	c.6842-?_6937+?del	DL	unknown	Unknown	3	1
BRCA2	c.6842-?_7007+?del	DL	unknown	Unknown	3	7
BRCA2	c.6879del	FS	NMD	PTC	1	1
BRCA2	c.6896dup	FS	NMD	PTC	1	1
BRCA2	c.6899_6906dup	FS	NMD	PTC	1	1
BRCA2	c.6901G>T	NS	NMD	PTC	1	2
BRCA2	c. $6937+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	1
BRCA2	c. $6937+594 T>G$	S	NMD	PTC	1	8

BRCA2	c.6938-1G>A	S	unknown	Unknown	3	1
BRCA2	c.6938-2A>C	S	unknown	Unknown	3	1
BRCA2	c.6938-2A>G	S	unknown	Unknown	3	1
BRCA2	c.6938-?_7007+?dup	DP	unknown	Unknown	3	1
BRCA2	c.6941del	FS	NMD	PTC	1	2
BRCA2	c.6944_6947del	FS	NMD	PTC	1	12
BRCA2	c.6947_6950del	FS	NMD	PTC	1	1
BRCA2	c.6948_6949insTT	FS	NMD	PTC	1	1
BRCA2	c.694dup	FS	NMD	PTC	1	1
BRCA2	c. $6952 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	11
BRCA2	c.6959T>A	NS	NMD	PTC	1	1
BRCA2	c.6959del	FS	NMD	PTC	1	2
BRCA2	c.6960del	FS	NMD	PTC	1	1
BRCA2	c.6976del	FS	NMD	PTC	1	1
BRCA2	c.6980del	FS	NMD	PTC	1	1
BRCA2	c.6990_6994del	FS	NMD	PTC	1	8
BRCA2	c.6996_7004delins(20)	FS	NMD	PTC	1	4
BRCA2	c.6998dup	FS	NMD	PTC	1	5
BRCA2	c.6999_7000insT	FS	NMD	PTC	1	1
BRCA2	c.7002del	FS	NMD	PTC	1	1
BRCA2	c.7003_7007del	FS/S?	unknown	Unknown	3	1
BRCA2	c.7006del	FS	NMD	PTC	1	2
BRCA2	c.7006dup	FS	NMD	PTC	1	1
BRCA2	c.7007+1G>C	S	unknown	Unknown	3	3
BRCA2	c. $7007+2 T>A$	S	unknown	Unknown	3	1
BRCA2	c. $7007+4 \mathrm{~A}>\mathrm{G}$	S	unknown	Unknown	3	2
BRCA2	c. $7007 \mathrm{G}>\mathrm{A}$	S	IFD	IFD	2	44
BRCA2	c.7007G>C	S?	unknown	Unknown	3	5
BRCA2	c.7007G>T	S?	unknown	Unknown	3	4
BRCA2	c.7008-1G>A	S	unknown	Unknown	3	11
BRCA2	c.7008-1G>T	S	unknown	Unknown	3	1
BRCA2	c. $7008-2 A>G$	S	unknown	Unknown	3	1
BRCA2	c.7008-2A>T	S	NMD	PTC	1	11
BRCA2	c.7008-?_7435+?del	DL	unknown	Unknown	3	1
BRCA2	c.7008-?_7805+?del	DL	unknown	Unknown	3	37
BRCA2	c.7008-?_8331+?del	DL	unknown	Unknown	3	4
BRCA2	c.7008-?_9117+?del	DL	unknown	Unknown	3	1
BRCA2	c.7008-?_9117+?dup	DP	unknown	Unknown	3	1
BRCA2	c.7008-?_9256+?[3]	TP	unknown	Unknown	3	3
BRCA2	c.700del	FS	NMD	PTC	1	9
BRCA2	c.7024C>T	NS	NMD	PTC	1	3
BRCA2	c.7024_7044delinsTG	FS	NMD	PTC	1	1
BRCA2	c.7025_7026del	FS	NMD	PTC	1	5
BRCA2	c.702del	FS	NMD	PTC	1	2
BRCA2	c.7032dup	FS	NMD	PTC	1	2
BRCA2	c.7033C>T	NS	NMD	PTC	1	1
BRCA2	c.7047del	FS	NMD	PTC	1	2
BRCA2	c.7060C>T	NS	NMD	PTC	1	5
BRCA2	c.7063G>T	NS	NMD	PTC	1	1
BRCA2	c.7069_7070del	FS	NMD	PTC	1	103
BRCA2	c.7075_7076insAlu	FS	unknown	Unknown	3	1
BRCA2	c.7092del	FS	NMD	PTC	1	1
BRCA2	c.7097dup	FS	NMD	PTC	1	1
BRCA2	c.7109_7110del	FS	NMD	PTC	1	1
BRCA2	c.7110dup	FS	NMD	PTC	1	1
BRCA2	c.7115C>G	NS	NMD	PTC	1	1
BRCA2	c.7124T>G	NS	NMD	PTC	1	1

BRCA2	c.712G>T	NS	NMD	PTC	1	3
BRCA2	c.7133C>G	NS	NMD	PTC	1	7
BRCA2	c.7147dup	FS	NMD	PTC	1	1
BRCA2	c.7151_7152del	FS	NMD	PTC	1	1
BRCA2	c.7152del	FS	NMD	PTC	1	1
BRCA2	c.715del	FS	NMD	PTC	1	2
BRCA2	c.715dup	FS	NMD	PTC	1	3
BRCA2	c.7177dup	FS	NMD	PTC	1	5
BRCA2	c.7180A>T	NS	NMD	PTC	1	38
BRCA2	c.7183del	FS	NMD	PTC	1	1
BRCA2	c.7184_7187del	FS	NMD	PTC	1	1
BRCA2	c.7187T>A	NS	NMD	PTC	1	1
BRCA2	c.7191del	FS	NMD	PTC	1	1
BRCA2	c.71T>G	NS	NMD	PTC	1	3
BRCA2	c.71del	FS	NMD	PTC	1	1
BRCA2	c.7208_7211del	FS	NMD	PTC	1	2
BRCA2	c.7209_7212delinsGG	FS	NMD	PTC	1	1
BRCA2	c.7210A>T	NS	NMD	PTC	1	1
BRCA2	c.7211_7212del	FS	NMD	PTC	1	1
BRCA2	c.7212del	FS	NMD	PTC	1	1
BRCA2	c.7226del	FS	NMD	PTC	1	1
BRCA2	c.7234_7235insG	FS	NMD	PTC	1	3
BRCA2	c.7235_7236insG	FS	NMD	PTC	1	1
BRCA2	c.723del	FS	NMD	PTC	1	3
BRCA2	c.7248del	FS	NMD	PTC	1	1
BRCA2	c.7251_7252del	FS	NMD	PTC	1	2
BRCA2	c.7254_7255del	FS	NMD	PTC	1	2
BRCA2	c.7258G>T	NS	NMD	PTC	1	3
BRCA2	c.7261C>T	NS	NMD	PTC	1	1
BRCA2	c.7266T>A	NS	NMD	PTC	1	1
BRCA2	c.7277_7283del	FS	NMD	PTC	1	3
BRCA2	c.7283T>A	NS	NMD	PTC	1	1
BRCA2	c.728dup	FS	NMD	PTC	1	1
BRCA2	c.729_730insC	FS	NMD	PTC	1	1
BRCA2	c.729_732del	FS	NMD	PTC	1	4
BRCA2	c.7301del	FS	NMD	PTC	1	7
BRCA2	c.7303C>T	NS	NMD	PTC	1	1
BRCA2	c.7309del	FS	NMD	PTC	1	2
BRCA2	c.7322del	FS	NMD	PTC	1	1
BRCA2	c.7338_7339ins(4)	FS	NMD	PTC	1	1
BRCA2	c.733A>T	NS	NMD	PTC	1	1
BRCA2	c.7342_7343del	FS	NMD	PTC	1	1
BRCA2	c.7355del	FS	NMD	PTC	1	1
BRCA2	c.7360del	FS	NMD	PTC	1	2
BRCA2	c.7363del	FS	NMD	PTC	1	2
BRCA2	c.7366C>T	NS	NMD	PTC	1	1
BRCA2	c.7368_7371del	FS	NMD	PTC	1	1
BRCA2	c.736_755del	FS	NMD	PTC	1	3
BRCA2	c.7375A>T	NS	NMD	PTC	1	1
BRCA2	c.7379_7382del	FS	NMD	PTC	1	1
BRCA2	c.7379del	FS	NMD	PTC	1	2
BRCA2	c.7389_7392del	FS	NMD	PTC	1	1
BRCA2	c.739_740del	FS	NMD	PTC	1	1
BRCA2	c.73G>T	NS	NMD	PTC	1	1
BRCA2	c.7408_7409del	FS	NMD	PTC	1	1
BRCA2	c.7409dup	FS	NMD	PTC	1	2
BRCA2	c.7412_7421del	FS	NMD	PTC	1	1

BRCA2	c.7414_7415del	FS	NMD	PTC	1	3
BRCA2	c.7419_7420del	FS	NMD	PTC	1	19
BRCA2	c.7425del	FS	NMD	PTC	1	2
BRCA2	c.7434dup	FS	NMD	PTC	1	1
BRCA2	c. $7435+1 G>C$	S	unknown	Unknown	3	1
BRCA2	c.7436-1G>C	S	unknown	Unknown	3	1
BRCA2	c. $7436-2 A>G$	S	unknown	Unknown	3	4
BRCA2	c.7436-2A>T	S	unknown	Unknown	3	2
BRCA2	c.7436-?_7805+?del	DL	unknown	Unknown	3	5
BRCA2	c.7436-?_7805+?dup	DP	unknown	Unknown	3	1
BRCA2	c.7436-?_8331+?dup	DP	unknown	Unknown	3	1
BRCA2	c.7443del	FS	NMD	PTC	1	2
BRCA2	c.7469del	FS	NMD	PTC	1	1
BRCA2	c.7471C>T	NS	NMD	PTC	1	2
BRCA2	c.7471del	FS	NMD	PTC	1	2
BRCA2	c.7480C>T	NS	NMD	PTC	1	84
BRCA2	c.7485dup	FS	NMD	PTC	1	1
BRCA2	c.7495C>T	NS	NMD	PTC	1	1
BRCA2	c.7501C>T	NS	NMD	PTC	1	1
BRCA2	c.7503_7506del	FS	NMD	PTC	1	1
BRCA2	c.7516C>T	NS	NMD	PTC	1	2
BRCA2	c.7517dup	FS	NMD	PTC	1	1
BRCA2	c.7518del	FS	NMD	PTC	1	1
BRCA2	c.7530_7531del	FS	NMD	PTC	1	1
BRCA2	c.7538del	FS	NMD	PTC	1	1
BRCA2	c.7543del	FS	NMD	PTC	1	1
BRCA2	c.7543dup	FS	NMD	PTC	1	5
BRCA2	c.754_755del	FS	NMD	PTC	1	1
BRCA2	c.7558C>T	NS	NMD	PTC	1	57
BRCA2	c.7558del	FS	NMD	PTC	1	1
BRCA2	c.755_758del	FS	NMD	PTC	1	73
BRCA2	c.7565_7568del	FS	NMD	PTC	1	1
BRCA2	c.7567_7568del	FS	NMD	PTC	1	3
BRCA2	c.756_757del	FS	NMD	PTC	1	1
BRCA2	c.756_759del	FS	NMD	PTC	1	13
BRCA2	c.757_758del	FS	NMD	PTC	1	2
BRCA2	c.7595_7596insTT	FS	NMD	PTC	1	2
BRCA2	c.7612A>T	NS	NMD	PTC	1	1
BRCA2	c.7615C>T	NS	NMD	PTC	1	1
BRCA2	c. $7617+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	75
BRCA2	c. $7617+1 \mathrm{G}>\mathrm{T}$	S	unknown	Unknown	3	8
BRCA2	c. $7617+2 T>G$	S	unknown	Unknown	3	3
BRCA2	c.7618-1G>A	S	unknown	Unknown	3	11
BRCA2	c.7618-2A>G	S	unknown	Unknown	3	5
BRCA2	c.7624dup	FS	NMD	PTC	1	1
BRCA2	c.7627dup	FS	NMD	PTC	1	2
BRCA2	c.7631del	FS	NMD	PTC	1	1
BRCA2	c.7638_7647del	FS	NMD	PTC	1	1
BRCA2	c.7643_7644del	FS	NMD	PTC	1	1
BRCA2	c.7647C>A	NS	NMD	PTC	1	1
BRCA2	c.7654dup	FS	NMD	PTC	1	2
BRCA2	c.7655_7658del	FS	NMD	PTC	1	1
BRCA2	c.765_770delinsAAACAAT	FS	NMD	PTC	1	1
BRCA2	c.7666_7667dup	FS	NMD	PTC	1	2
BRCA2	c.7667dup	FS	NMD	PTC	1	1
BRCA2	c.7668_7669insA	FS	NMD	PTC	1	1
BRCA2	c.7671del	FS	NMD	PTC	1	3

BRCA2	c.7673_7674del	FS	NMD	PTC	1	11
BRCA2	c.7679_7680del	FS	NMD	PTC	1	1
BRCA2	c.767_768del	FS	NMD	PTC	1	5
BRCA2	c.767del	FS	NMD	PTC	1	2
BRCA2	c.7680dup	FS	NMD	PTC	1	20
BRCA2	c.7681C>T	NS	NMD	PTC	1	4
BRCA2	c.7681_7682insT	FS	NMD	PTC	1	6
BRCA2	c.7689del	FS	NMD	PTC	1	2
BRCA2	c.7707del	FS	NMD	PTC	1	2
BRCA2	c.7708A>T	NS	NMD	PTC	1	1
BRCA2	c.771_775del	FS	NMD	PTC	1	134
BRCA2	c.772C>T	NS	NMD	PTC	1	4
BRCA2	c.7738C>T	NS	NMD	PTC	1	1
BRCA2	c.7744del	FS	NMD	PTC	1	2
BRCA2	c.774_775del	FS	NMD	PTC	1	8
BRCA2	c.7757G>A	NS	NMD	PTC	1	20
BRCA2	c.7758G>A	NS	NMD	PTC	1	10
BRCA2	c.7762_7764delinsTT	FS	NMD	PTC	1	25
BRCA2	c.7762_7766dup	FS	NMD	PTC	1	3
BRCA2	c.7781dup	FS	NMD	PTC	1	1
BRCA2	c.778_779del	FS	NMD	PTC	1	4
BRCA2	c.7795G>T	NS	NMD	PTC	1	1
BRCA2	c.7795_7797del	IFD	IFD	IFD	2	12
BRCA2	c.7805+1G>A	S	unknown	Unknown	3	2
BRCA2	c. $7805+2 \mathrm{~T}>\mathrm{G}$	S	unknown	Unknown	3	1
BRCA2	c. $7805+3 A>C$	S	unknown	Unknown	3	1
BRCA2	c.7805G>C	S	unknown	Unknown	3	2
BRCA2	c.7806-1G>T	S	unknown	Unknown	3	2
BRCA2	c.7806-2A>G	S	IFD	IFD	2	21
BRCA2	c.7806-2A>T	S	unknown	Unknown	3	1
BRCA2	c.7806-9T>G	S	unknown	Unknown	3	1
BRCA2	c.7806-?_8331+?del	DL	unknown	Unknown	3	3
BRCA2	c.7806_7807insAG	FS/S?	NMD	PTC	1	3
BRCA2	c.7815_7816del	FS	NMD	PTC	1	1
BRCA2	c.7816_7819dup	FS	NMD	PTC	1	1
BRCA2	c.7846del	FS	NMD	PTC	1	7
BRCA2	c.7856G>A	NS	NMD	PTC	1	1
BRCA2	c.7857G>A	NS	NMD	PTC	1	6
BRCA2	c.7858del	FS	NMD	PTC	1	1
BRCA2	c.7861del	FS	NMD	PTC	1	1
BRCA2	c.7863T>A	NS	NMD	PTC	1	1
BRCA2	c.7865dup	FS	NMD	PTC	1	1
BRCA2	c.7872_7873del	FS	NMD	PTC	1	1
BRCA2	c.7877G>A	NS	NMD	PTC	1	1
BRCA2	c.7878G>A	NS	NMD	PTC	1	12
BRCA2	c.7878G>C	MS	MS	MS	2	8
BRCA2	c.7878_7881dup	FS	NMD	PTC	1	1
BRCA2	c.7879A>T	MS	MS	MS	2	15
BRCA2	c.7884dup	FS	NMD	PTC	1	4
BRCA2	c.7887G>A	NS	NMD	PTC	1	1
BRCA2	c.7908T>A	NS	NMD	PTC	1	1
BRCA2	c.7911_7912insGAAA	FS	NMD	PTC	1	1
BRCA2	c.7913_7917del	FS	NMD	PTC	1	37
BRCA2	c.7921_7926delinsAG	FS	NMD	PTC	1	3
BRCA2	c. $793+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	4
BRCA2	c. $793+1 \mathrm{G}>\mathrm{T}$	S	unknown	Unknown	3	1
BRCA2	c. $793+2 \mathrm{~T}>\mathrm{G}$	S	unknown	Unknown	3	1

BRCA2	c.7933A>T	NS	NMD	PTC	1	2
BRCA2	c.7934del	FS	NMD	PTC	1	92
BRCA2	c.794-?_6937+?del	DL	unknown	Unknown	3	1
BRCA2	c.7940_7941insC	FS	NMD	PTC	1	1
BRCA2	c.7947dup	FS	NMD	PTC	1	1
BRCA2	c.7958T>C	MS	unknown	Unknown	3	1
BRCA2	c.7963C>T	NS	NMD	PTC	1	2
BRCA2	c.7974C>A	NS	NMD	PTC	1	3
BRCA2	c.7974C>A/G	NS	NMD	PTC	1	1
BRCA2	c.7974C>G	NS	NMD	PTC	1	1
BRCA2	c.7976+1G>A	S	unknown	Unknown	3	5
BRCA2	c. $7976+1 \mathrm{G}>\mathrm{C}$	S	unknown	Unknown	3	1
BRCA2	c.7976+2C>A	S	unknown	Unknown	3	1
BRCA2	c.7976+3_7976+4del	S	unknown	Unknown	3	1
BRCA2	c.7976+5G>A	S	unknown	Unknown	3	1
BRCA2	c.7976G>A	S	IFD	IFD	2	21
BRCA2	c.7977-1G>A	S	unknown	Unknown	3	3
BRCA2	c.7977-1G>C	S	unknown	Unknown	3	36
BRCA2	c.7977-2A>T	S	unknown	Unknown	3	1
BRCA2	c.7977-2del	S	unknown	Unknown	3	4
BRCA2	c.7977-3_7977-1delinsAA	FS/S?	unknown	Unknown	3	1
BRCA2	c.7980T>G	NS	NMD	PTC	1	3
BRCA2	c.7980_7984del	FS	NMD	PTC	1	1
BRCA2	c.7984dup	FS	NMD	PTC	1	2
BRCA2	c.7987del	FS	NMD	PTC	1	3
BRCA2	c.7988A>T	MS	MS	MS	2	18
BRCA2	c.798del	FS	NMD	PTC	1	1
BRCA2	c.7996A>T	NS	NMD	PTC	1	1
BRCA2	c.8002A>T	NS	NMD	PTC	1	6
BRCA2	c.8002_8008dup	FS	NMD	PTC	1	1
BRCA2	c.8008_8030del	FS	NMD	PTC	1	1
BRCA2	c. $8009 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	6
BRCA2	c.8009del	FS	NMD	PTC	1	2
BRCA2	c.8020_8021del	FS	NMD	PTC	1	1
BRCA2	c.8021del	FS	NMD	PTC	1	4
BRCA2	c.8021dup	FS	NMD	PTC	1	3
BRCA2	c.8023A>G	S	unknown	Unknown	3	6
BRCA2	c.8029_8030del	FS	NMD	PTC	1	2
BRCA2	c.8029del	FS	NMD	PTC	1	1
BRCA2	c.8032_8033dup	FS	NMD	PTC	1	2
BRCA2	c.8042_8043del	FS	NMD	PTC	1	4
BRCA2	c.8049_8050insT	FS	NMD	PTC	1	1
BRCA2	c.8053del	FS	NMD	PTC	1	3
BRCA2	c.8056del	FS	NMD	PTC	1	1
BRCA2	c.8058del	FS	NMD	PTC	1	3
BRCA2	c.805dup	FS	NMD	PTC	1	1
BRCA2	c.8064_8065del	FS	NMD	PTC	1	2
BRCA2	c.8067T>A	NS	NMD	PTC	1	27
BRCA2	c.8067_8068insTT	FS	NMD	PTC	1	1
BRCA2	c.8067del	FS	NMD	PTC	1	1
BRCA2	c.8068_8069del	FS	NMD	PTC	1	4
BRCA2	c.8070_8071dup	FS	NMD	PTC	1	3
BRCA2	c.8072_8073del	FS	NMD	PTC	1	1
BRCA2	c. $8084 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA2	c.8087T>A	NS	NMD	PTC	1	1
BRCA2	c.809C>G	NS	NMD	PTC	1	2
BRCA2	c.8113dup	FS	NMD	PTC	1	1

1

BRCA2	c.8130del	FS	NMD	PTC	1	1
BRCA2	c.8140C>T	NS	NMD	PTC	1	10
BRCA2	c.8160_8196dup	FS	NMD	PTC	1	1
BRCA2	c.8164del	FS	NMD	PTC	1	1
BRCA2	c. $8165 C>G$	MS	MS	MS	2	6
BRCA2	c. $8167 \mathrm{G}>\mathrm{C}$	MS	MS	MS	2	68
BRCA2	c. $8168 \mathrm{~A}>\mathrm{G}$	MS	MS	MS	2	11
BRCA2	c.8172_8175dup	FS	NMD	PTC	1	4
BRCA2	c. $8174 \mathrm{G} \times \mathrm{A}$	NS	NMD	PTC	1	2
BRCA2	c.8174_8185delinsTT	FS	NMD	PTC	1	1
BRCA2	c. $8178 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	6
BRCA2	c. $818 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA2	c. $818 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA2	c.8195T>G	NS	NMD	PTC	1	1
BRCA2	c.8195_8202del	FS	NMD	PTC	1	1
BRCA2	c.8201del	FS	NMD	PTC	1	1
BRCA2	c.8205_8206del	FS	NMD	PTC	1	2
BRCA2	c.8206dup	FS	NMD	PTC	1	4
BRCA2	c.8207del	FS	NMD	PTC	1	1
BRCA2	c.8208_8209insAG	FS	NMD	PTC	1	1
BRCA2	c.8234_8237del	FS	NMD	PTC	1	5
BRCA2	c.8234dup	FS	NMD	PTC	1	2
BRCA2	c.8238_8241del	FS	NMD	PTC	1	1
BRCA2	c. $8243 \mathrm{G}>\mathrm{A}$	MS	MS	MS	2	9
BRCA2	c.8247_8248del	FS	NMD	PTC	1	36
BRCA2	c.8253dup	FS	NMD	PTC	1	2
BRCA2	c.8272_8273delinsTA	NS	NMD	PTC	1	1
BRCA2	c.8276_8279del	FS	NMD	PTC	1	1
BRCA2	c.8278_8279ins(71)	FS	NMD	PTC	1	1
BRCA2	c.8283_8284dup	FS	NMD	PTC	1	1
BRCA2	c.8285del	FS	NMD	PTC	1	2
BRCA2	c.8290dup	FS	NMD	PTC	1	1
BRCA2	c.8295T>A	NS	NMD	PTC	1	1
BRCA2	c.8297del	FS	NMD	PTC	1	68
BRCA2	c.8298_8299dup	FS	NMD	PTC	1	1
BRCA2	c.8301del	FS	NMD	PTC	1	1
BRCA2	c.8312del	FS	NMD	PTC	1	3
BRCA2	c.8314G>T	NS	NMD	PTC	1	1
BRCA2	c.8316_8317dup	FS	NMD	PTC	1	1
BRCA2	c.831dup	FS	NMD	PTC	1	1
BRCA2	c.8322dup	FS	NMD	PTC	1	3
BRCA2	c.8323dup	FS	NMD	PTC	1	4
BRCA2	c.8324_8325insA	FS	NMD	PTC	1	1
BRCA2	c.8327T>G	NS	NMD	PTC	1	2
BRCA2	c.8327_8331del	FS	NMD	PTC	1	1
BRCA2	c.8329A>T	NS	NMD	PTC	1	1
BRCA2	c.8330del	FS	NMD	PTC	1	1
BRCA2	c. $8331+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	4
BRCA2	c. $8331+2 T>C$	S	unknown	Unknown	3	3
BRCA2	c.8332-1G>A	S	unknown	Unknown	3	1
BRCA2	c.8332-1G>T	S	unknown	Unknown	3	1
BRCA2	c.8332-2A>G	S	unknown	Unknown	3	5
BRCA2	c.8332-?_8487+?del	DL	unknown	Unknown	3	1
BRCA2	c.8332-?_8632+?del	DL	unknown	Unknown	3	5
BRCA2	c.8332-?_8632+?dup	DP	Unknown	Unknown	3	4
BRCA2	c.8340_8343del	FS	NMD	PTC	1	1
BRCA2	c. 8347 del	FS	NMD	PTC	1	1

BRCA2	c.8362_8363del	FS	NMD	PTC	1	1
BRCA2	c. $8363 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	6
BRCA2	c. $8364 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	44
BRCA2	c.8374_8384delinsA	FS	NMD	PTC	1	1
BRCA2	c. $8377 \mathrm{G}>\mathrm{A}$	MS	MS	MS	2	2
BRCA2	c. 8385 del	FS	NMD	PTC	1	3
BRCA2	c.8393_8396dup	FS	NMD	PTC	1	1
BRCA2	c.8393_8399del	FS	NMD	PTC	1	1
BRCA2	c.8393dup	FS	NMD	PTC	1	1
BRCA2	c.8394_8396delinsAA	FS	NMD	PTC	1	1
BRCA2	c.8395A>T	NS	NMD	PTC	1	1
BRCA2	c.8395del	FS	NMD	PTC	1	1
BRCA2	c.8401_8403delinsAAAA	FS	NMD	PTC	1	2
BRCA2	c.8414_8416delinsC	FS	NMD	PTC	1	2
BRCA2	c.842_843del	FS	NMD	PTC	1	1
BRCA2	c.8434_8435insC	FS	NMD	PTC	1	5
BRCA2	c.8438del	FS	NMD	PTC	1	1
BRCA2	c.8451T>A	NS	NMD	PTC	1	2
BRCA2	c.8463dup	FS	NMD	PTC	1	5
BRCA2	c.8466dup	FS	NMD	PTC	1	1
BRCA2	c.846_847del	FS	NMD	PTC	1	1
BRCA2	c.8470A>T	NS	NMD	PTC	1	1
BRCA2	c. 8474 del	FS	NMD	PTC	1	6
BRCA2	c. $8478 \mathrm{C}>\mathrm{A} / \mathrm{G}$	NS	NMD	PTC	1	1
BRCA2	c. $8478 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA2	c. $8485 \mathrm{C}>\mathrm{T}$	NS	NMD	PTC	1	4
BRCA2	c. $8486 \mathrm{~A}>\mathrm{G}$	S	IFD	IFD	2	1
BRCA2	c. $8487+1 \mathrm{G}>\mathrm{A}$	S	IFD	IFD	2	24
BRCA2	c. $8487+2 T>C$	S	unknown	Unknown	3	2
BRCA2	c. $8488-1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	9
BRCA2	c.8488-1G>T	S	unknown	Unknown	3	1
BRCA2	c.8488-?_8632+?del	DL	unknown	Unknown	3	4
BRCA2	c.8488-?_8632+?dup	DP	unknown	Unknown	3	2
BRCA2	c. $8489 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	2
BRCA2	c.8490G>A	NS	NMD	PTC	1	1
BRCA2	c.8501del	FS	NMD	PTC	1	1
BRCA2	c.8504C>A	NS	NMD	PTC	1	2
BRCA2	c.8504C>G	NS	NMD	PTC	1	1
BRCA2	c.8513T>A	NS	NMD	PTC	1	2
BRCA2	c.8517C>A	NS	NMD	PTC	1	2
BRCA2	c.8518del	FS	NMD	PTC	1	2
BRCA2	c.8535_8538del	FS	NMD	PTC	1	4
BRCA2	c.8536G>T	NS	NMD	PTC	1	2
BRCA2	c.8537_8538del	FS	NMD	PTC	1	108
BRCA2	c.8546del	FS	NMD	PTC	1	3
BRCA2	c.8560del	FS	NMD	PTC	1	5
BRCA2	c.8561dup	FS	NMD	PTC	1	2
BRCA2	c.8562del	FS	NMD	PTC	1	1
BRCA2	c.8566del	FS	NMD	PTC	1	1
BRCA2	c.8572C>T	NS	NMD	PTC	1	3
BRCA2	c.8575C>T	NS	NMD	PTC	1	4
BRCA2	c.8575del	FS	NMD	PTC	1	54
BRCA2	c. 8579 del	FS	NMD	PTC	1	2
BRCA2	c.857_860dup	FS	NMD	PTC	1	2
BRCA2	c.8585dup	FS	NMD	PTC	1	10
BRCA2	c.8620G>T	NS	NMD	PTC	1	1
BRCA2	c.8629G>T	NS	NMD	PTC	1	1

1

BRCA2	c. $8632+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	1
BRCA2	c. $8633-1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	2
BRCA2	c.8633-24_8634del	S	unknown	Unknown	3	1
BRCA2	c. $8633-2 A>G$	S	unknown	Unknown	3	3
BRCA2	c.8633-2A>T	S	unknown	Unknown	3	1
BRCA2	c. $8633-$? $8754+$?del	DL	unknown	Unknown	3	6
BRCA2	c.8633-?_8754+?dup	DP	unknown	Unknown	3	3
BRCA2	c.8633-?_9256+?del	DL	unknown	Unknown	3	7
BRCA2	c.8636dup	FS	NMD	PTC	1	1
BRCA2	c.8639_8640del	NS	NMD	PTC	1	1
BRCA2	c.8645_8646del	FS	NMD	PTC	1	1
BRCA2	c.8646del	FS	NMD	PTC	1	1
BRCA2	c.8652T>G	NS	NMD	PTC	1	1
BRCA2	c.8673_8674del	FS	NMD	PTC	1	4
BRCA2	c. 8676 del	FS	NMD	PTC	1	1
BRCA2	c.8677C>T	NS	NMD	PTC	1	3
BRCA2	c.8680del	FS	NMD	PTC	1	2
BRCA2	c.8695C>T	NS	NMD	PTC	1	10
BRCA2	c.8710_8711insAG	FS	NMD	PTC	1	1
BRCA2	c.8717_8718del	FS	NMD	PTC	1	1
BRCA2	c.8730del	FS	NMD	PTC	1	1
BRCA2	c. $8754+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	1
BRCA2	c. $8754+1 \mathrm{G}>\mathrm{T}$	S	unknown	Unknown	3	3
BRCA2	c. $8754+3 \mathrm{G}>\mathrm{C}$	S	unknown	Unknown	3	1
BRCA2	c. $8754+4 A>G$	S	NMD	PTC	1	13
BRCA2	c. $8754+5 \mathrm{G}>\mathrm{A}$	FS/S	unknown	Unknown	3	3
BRCA2	c.8754G>A	S?	unknown	Unknown	3	1
BRCA2	c.8755-1G>A	S	NMD	PTC	1	30
BRCA2	c.8755-375_9256+681del	DL	unknown	Unknown	3	1
BRCA2	c.8755-?_9117+?del	DL	unknown	Unknown	3	1
BRCA2	c.8755-?_9256+?del	DL	unknown	Unknown	3	1
BRCA2	c.8756del	FS	NMD	PTC	1	2
BRCA2	c.8760T>G	NS	NMD	PTC	1	1
BRCA2	c.8767_8776del	FS	NMD	PTC	1	1
BRCA2	c.8770G>T	NS	NMD	PTC	1	3
BRCA2	c. $8773 \mathrm{C}>$ T	NS	NMD	PTC	1	2
BRCA2	c.8777T>A	NS	NMD	PTC	1	1
BRCA2	c.8798_8802del	FS	NMD	PTC	1	1
BRCA2	c.8800del	FS	NMD	PTC	1	1
BRCA2	c.880G $>$ T	NS	NMD	PTC	1	3
BRCA2	c.8817_8820del	FS	NMD	PTC	1	2
BRCA2	c.8821C>T	NS	NMD	PTC	1	2
BRCA2	c.8830del	FS	NMD	PTC	1	1
BRCA2	c.8839G>T	NS	NMD	PTC	1	2
BRCA2	c.8848_8851del	FS	NMD	PTC	1	1
BRCA2	c.8848delinsCT	FS	NMD	PTC	1	2
BRCA2	c. 884 del	FS	NMD	PTC	1	2
BRCA2	c.8850_8851dup	FS	NMD	PTC	1	1
BRCA2	c. $8869 \mathrm{C}>$ T	NS	NMD	PTC	1	4
BRCA2	c.8875G>T	NS	NMD	PTC	1	1
BRCA2	c.8878C>T	NS	NMD	PTC	1	38
BRCA2	c.8887del	FS	NMD	PTC	1	1
BRCA2	c. $8888 \mathrm{C}>\mathrm{G}$	NS	NMD	PTC	1	2
BRCA2	c.8904del	FS	NMD	PTC	1	67
BRCA2	c.8910G>A	NS	NMD	PTC	1	1
BRCA2	c.8915T>A	NS	NMD	PTC	1	1
BRCA2	c.8915del	FS	NMD	PTC	1	2

BRCA2	c.8919dup	FS	NMD	PTC	1	1
BRCA2	c.891_898delins(10)	FS	NMD	PTC	1	8
BRCA2	c.8924del	FS	NMD	PTC	1	3
BRCA2	c.8930del	FS	NMD	PTC	1	4
BRCA2	c.8931T>A	NS	NMD	PTC	1	1
BRCA2	c.8933C>A	NS	NMD	PTC	1	1
BRCA2	c.8938A>T	NS	NMD	PTC	1	2
BRCA2	c.8940dup	FS	NMD	PTC	1	1
BRCA2	c.8941G>T	NS	NMD	PTC	1	2
BRCA2	c.8941_8942del	FS	NMD	PTC	1	4
BRCA2	c.8941del	FS	NMD	PTC	1	1
BRCA2	c.8946del	FS	NMD	PTC	1	3
BRCA2	c.8946dup	FS	NMD	PTC	1	6
BRCA2	c.8947dup	FS	NMD	PTC	1	1
BRCA2	c.8948_8953+5del	FS	NMD	PTC	1	1
BRCA2	c.8951C>A	NS	NMD	PTC	1	2
BRCA2	c.8951C>G	NS	NMD	PTC	1	3
BRCA2	c. $8953+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	4
BRCA2	c. $8953+1 \mathrm{G}>\mathrm{T}$	S	unknown	Unknown	3	15
BRCA2	c. $8953+2 T>G$	S	unknown	Unknown	3	1
BRCA2	c.8954-15T>G	FS	NMD	PTC	1	1
BRCA2	c.8954-1_8955delinsAA	S	IFD	IFD. PTC	2	3
BRCA2	c.8954-5A>G	FS/S?	unknown	Unknown	3	4
BRCA2	c.8954-?_9256+?del	DL	unknown	Unknown	3	1
BRCA2	c.8959_8962del	FS	NMD	PTC	1	1
BRCA2	c.8961_8964del	FS	NMD	PTC	1	10
BRCA2	c.8965del	FS	NMD	PTC	1	2
BRCA2	c.8970G>A	NS	NMD	PTC	1	2
BRCA2	c.8972_9097del	IFD	IFD	IFD	2	1
BRCA2	c.8978C>A	NS	NMD	PTC	1	3
BRCA2	c.8978_8991del	FS	NMD	PTC	1	1
BRCA2	c.8986_8987insAGAT	FS	NMD	PTC	1	1
BRCA2	c.8991T>G	NS	NMD	PTC	1	4
BRCA2	c.8993_9024del	FS	NMD	PTC	1	1
BRCA2	c.9016_9017del	FS	NMD	PTC	1	4
BRCA2	c.9017dup	FS	NMD	PTC	1	2
BRCA2	c.9018C>A	NS	NMD	PTC	1	19
BRCA2	c.9019_9020insTCTA	FS	NMD	PTC	1	1
BRCA2	c.9024_9046del	FS	NMD	PTC	1	1
BRCA2	c.9025del	FS	NMD	PTC	1	1
BRCA2	c.9025dup	FS	NMD	PTC	1	1
BRCA2	c.9026_9030del	FS	NMD	PTC	1	87
BRCA2	c.9027del	FS	NMD	PTC	1	2
BRCA2	c.9034dup	FS	NMD	PTC	1	1
BRCA2	c.9041C>A	NS	NMD	PTC	1	3
BRCA2	c.9052del	FS	NMD	PTC	1	1
BRCA2	c.9054_9055del	FS	NMD	PTC	1	3
BRCA2	c.905_906insA	FS	NMD	PTC	1	1
BRCA2	c.9060dup	FS	NMD	PTC	1	2
BRCA2	c.9063_9064dup	FS	NMD	PTC	1	1
BRCA2	c.9063_9078del	FS	NMD	PTC	1	3
BRCA2	c.9069_9076del	FS	NMD	PTC	1	3
BRCA2	c.906del	FS	NMD	PTC	1	1
BRCA2	c.9074_9075del	FS	NMD	PTC	1	1
BRCA2	c.9076C>T	NS	NMD	PTC	1	7
BRCA2	c.9089del	FS	NMD	PTC	1	1
BRCA2	c.9097del	FS	NMD	PTC	1	15

1

BRCA2	c.9097dup	FS	NMD	PTC	1	55
BRCA2	c.9098_9099insA	FS	NMD	PTC	1	25
BRCA2	c.9099_9100del	FS	NMD	PTC	1	4
BRCA2	c. $9100 \mathrm{C}>$ T	NS	NMD	PTC	1	2
BRCA2	c. $9105 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA2	c.9106C>T	NS	NMD	PTC	1	5
BRCA2	c.9106delinsTACT	FS	NMD	PTC	1	2
BRCA2	c. $9109 \mathrm{C}>$ T	NS	NMD	PTC	1	3
BRCA2	c. $9117+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	7
BRCA2	c. $9117+1 \mathrm{G}>\mathrm{T}$	S	NMD	PTC	1	2
BRCA2	c. $9117+2 T>C$	S	NMD	PTC	1	1
BRCA2	c. $9117 \mathrm{G}>\mathrm{A}$	S	NMD	PTC	1	67
BRCA2	c. $9117 \mathrm{G}>\mathrm{T}$	MS/S?	MS	MS	2	1
BRCA2	c.9118-1G>A	S	NMD	PTC	1	1
BRCA2	c. $9118-2 A>C$	S	unknown	Unknown	3	1
BRCA2	c.9118-2A>G	S	NMD	PTC	1	21
BRCA2	c.9118-2A>T	S	NMD	PTC	1	1
BRCA2	c.9118-7_9121del	FS/S?	unknown	Unknown	3	1
BRCA2	c. $9127 \mathrm{G}>\mathrm{T}$	NS	NMD	PTC	1	2
BRCA2	c.9134del	FS	NMD	PTC	1	1
BRCA2	c.9139C>T	NS	NMD	PTC	1	1
BRCA2	c. $9147 \mathrm{C}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA2	c. $9148 \mathrm{C}>$ T	NS	NMD	PTC	1	1
BRCA2	c. $9154 \mathrm{C}>$ T	MS	MS	MS	2	22
BRCA2	c.9157del	FS	NMD	PTC	1	4
BRCA2	c.9177del	FS	NMD	PTC	1	2
BRCA2	c. $9182 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	3
BRCA2	c.9182T>G	NS	NMD	PTC	1	1
BRCA2	c.918dup	FS	NMD	PTC	1	1
BRCA2	c.9196C>T	NS	NMD	PTC	1	17
BRCA2	c.919_920insT	FS	NMD	PTC	1	1
BRCA2	c.9207T>A	NS	NMD	PTC	1	1
BRCA2	c.9218_9219insATTT	FS	NMD	PTC	1	1
BRCA2	c.9227del	FS	NMD	PTC	1	4
BRCA2	c.9235del	FS	NMD	PTC	1	1
BRCA2	c.9247A>T	NS	NMD	PTC	1	1
BRCA2	c.9252_9255delinsTT	FS	NMD	PTC	1	6
BRCA2	c.9253del	FS	NMD	PTC	1	6
BRCA2	c.9253dup	FS	NMD	PTC	1	31
BRCA2	c. $9256+1 \mathrm{G}>\mathrm{A}$	S	NMD	PTC	1	1
BRCA2	c. $9256+1 \mathrm{G}>\mathrm{C}$	S	unknown	Unknown	3	2
BRCA2	c.9256G>T	NS	NMD	PTC	1	1
BRCA2	c.9256_9256+2delinsACAG	S	unknown	Unknown	3	1
BRCA2	c.9257-1G>C	S	unknown	Unknown	3	7
BRCA2	c.9257-2A>G	S	unknown	Unknown	3	3
BRCA2	c.9257-2_9261dup	FS	NMD	PTC	1	1
BRCA2	c.9257-3_9258del	S	unknown	Unknown	3	1
BRCA2	c.9257-?_10257+?del	DL	unknown	Unknown	3	1
BRCA2	c.9269dup	FS	NMD	PTC	1	4
BRCA2	c.926C>A	NS	NMD	PTC	1	1
BRCA2	c.9275_9276del	FS	NMD	PTC	1	2
BRCA2	c.9275_9278del	FS	NMD	PTC	1	2
BRCA2	c.9276T>G	NS	NMD	PTC	1	1
BRCA2	c.9277_9287del	FS	NMD	PTC	1	2
BRCA2	c.9286G>T	NS	NMD	PTC	1	6
BRCA2	c.9286dup	FS	NMD	PTC	1	1
BRCA2	c.9291_9306del	FS	NMD	PTC	1	2

BRCA2	c.9294C>A	NS	NMD	PTC	1	15
BRCA2	c.9294C>G	NS	NMD	PTC	1	27
BRCA2	c.92G>A	NS	NMD	PTC	1	2
BRCA2	c.9310_9311del	FS	NMD	PTC	1	9
BRCA2	c.9311dup	FS	NMD	PTC	1	1
BRCA2	c.9317G>A	NS	NMD	PTC	1	4
BRCA2	c.9318G>A	NS	NMD	PTC	1	1
BRCA2	c.9331_9335delinsCCT	FS	NMD	PTC	1	1
BRCA2	c.9350del	FS	NMD	PTC	1	1
BRCA2	c.9351dup	FS	NMD	PTC	1	1
BRCA2	c.9352_9353del	FS	NMD	PTC	1	1
BRCA2	c.9352_9353insAT	FS	NMD	PTC	1	1
BRCA2	c.9354_9355del	FS	NMD	PTC	1	3
BRCA2	c. $9356 \mathrm{~T}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA2	c. $9356 \mathrm{~T}>\mathrm{G}$	NS	NMD	PTC	1	1
BRCA2	c.9357_9360del	FS	NMD	PTC	1	4
BRCA2	c.9371A>T	MS	MS	MS	2	10
BRCA2	c. $9376 C>T$	NS	NMD	PTC	1	2
BRCA2	c.9380G>A	NS	NMD	PTC	1	11
BRCA2	c. $9381 \mathrm{G}>\mathrm{A}$	NS	NMD	PTC	1	1
BRCA2	c.9381_9388del	FS	NMD	PTC	1	1
BRCA2	c. $9382 \mathrm{C}>$ T	NS	NMD	PTC	1	97
BRCA2	c.9393del	FS	NMD	PTC	1	1
BRCA2	c.93G>A	NS	NMD	PTC	1	2
BRCA2	c.9401del	FS	NMD	PTC	1	11
BRCA2	c.9403del	FS	NMD	PTC	1	24
BRCA2	c.9408del	FS	NMD	PTC	1	2
BRCA2	c.9409_9412del	FS	NMD	PTC	1	1
BRCA2	c.9413T>G	NS	NMD	PTC	1	1
BRCA2	c.9413dup	FS	NMD	PTC	1	1
BRCA2	c.9418_9430del	FS	NMD	PTC	1	2
BRCA2	c.9423del	FS	NMD	PTC	1	1
BRCA2	c.9429_9430del	FS	NMD	PTC	1	1
BRCA2	c.9430del	FS	NMD	PTC	1	1
BRCA2	c.9435_9436del	FS	NMD	PTC	1	29
BRCA2	c.9440dup	FS	NMD	PTC	1	1
BRCA2	c.9453del	FS	NMD	PTC	1	1
BRCA2	c.9455_9456del	FS	NMD	PTC	1	4
BRCA2	c.9455_9456dup	FS	NMD	PTC	1	2
BRCA2	c.9458del	FS	NMD	PTC	1	3
BRCA2	c.9463_9467delinsGAATGATC	IFI/FS	NMD	PTC	1	1
BRCA2	c.9474del	FS	NMD	PTC	1	1
BRCA2	c.9481A>T	NS	NMD	PTC	1	8
BRCA2	c.9498del	FS	unknown	PTC	3	4
BRCA2	c.9499_9501+2del	S	unknown	Unknown	3	1
BRCA2	c.949del	FS	NMD	PTC	1	1
BRCA2	c. $9501+1 \mathrm{G}>\mathrm{A}$	S	unknown	Unknown	3	3
BRCA2	c. $9501+1 \mathrm{G}>\mathrm{T}$	S	unknown	Unknown	3	4
BRCA2	c.9502-2A>C	S	unknown	Unknown	3	1
BRCA2	c.9507del	FS	unknown	PTC	3	2
BRCA2	c.952A>T	NS	NMD	PTC	1	3
BRCA2	c.9537_9544del	FS	NMD	PTC	1	1
BRCA2	c.9537dup	FS	NMD	PTC	1	1
BRCA2	c.9550_9563dup	FS	NMD	PTC	1	2
BRCA2	c.956del	FS	NMD	PTC	1	2
BRCA2	c.956dup	FS	NMD	PTC	1	8
BRCA2	c.9572G>A	NS	NMD	PTC	1	3

2	BRCA2	c.9580_9581del	FS	NMD	PTC	1	3
3	BRCA2	c.961C>T	NS	NMD	PTC	1	2
4	BRCA2	c.9666del	FS	no NMD	PTC	2	4
5	BRCA2	c.9672dup	FS	no NMD	PTC	2	31
6	BRCA2	c.9676del	FS	no NMD	PTC	2	5
7	BRCA2	c.9682del	FS	no NMD	PTC	2	1
8	BRCA2	c.968_971del	FS	NMD	PTC	1	3
9	BRCA2	c.9699_9702del	FS	no NMD	PTC	2	14
10	BRCA2	c.9728del	FS	no NMD	PTC	2	1
11	BRCA2	c. $9739 \mathrm{C}>$ T	FS	no NMD	PTC	2	1
12	BRCA2	c.9748dup	FS	no NMD	PTC	2	1
13	BRCA2	c.9789_9790del	FS	no NMD	PTC	2	1
14	BRCA2	c.979A>T	NS	NMD	PTC	1	1
15	BRCA2	c.97G>T	NS	NMD	PTC	1	4
16	BRCA2	c.9808del	FS	NMD	PTC	1	1
17	BRCA2	c.9846dup	FS	no NMD	PTC	2	1
18	BRCA2	c.9871del	FS	no NMD	PTC	2	2
19	BRCA2	c. $9883 \mathrm{C}>$ T	NS	no NMD	PTC	2	3
20	BRCA2	c.9924C>A	NS	no NMD	PTC	2	1
21	BRCA2	c.9924C>G	NS	no NMD	PTC	2	13
22	BRCA2	c. $9925 \mathrm{G}>$ T	NS	no NMD	PTC	2	1
23	BRCA2	c.994del	FS	NMD	PTC	1	7
24	BRCA2	c.994dup	FS	NMD	PTC	1	3
25	BRCA2	c.995_996insA	FS	NMD	PTC	1	1
26	BRCA2	c.995_996insG	FS	NMD	PTC	1	1

27

28

29

[^0]: Research Laboratory, Department of Medicine
 Prajzendanc, Karolina; Pomeranian Medical University, Department of Genetics and Pathology
 Prieur, Fabienne; Hôpital Nord, Service de Génétique Clinique Chromosomique et Moléculaire
 Jean-Marc, Rey; Hôpital Arnaud de Villeneuve, Laboratoire de Biologie Cellulaire et Hormonale
 Radice, Paolo; Istituto Nazionale Tumori,
 Ramus, Susan ; School of Women'sand Children's Health, UNSW Sydney;
 Kinghorn Cancer Center, Garvin Institute of Medical Research
 Rantala, Johanna; Karolinska Universitetssjukhuset, Depsrtment of Clinical Genetics
 Rashid, Muhammad; Deutsches Krebsforschungszentrum, Molecular Genetics of Breast Cancer
 Rhiem, Kerstin; University Hospital of Cologne, Centre of Familial Breast and Ovarian Cancer, Department of Gynaecology and Obstetrics and
 Centre for Integrated Oncology (CIO), Center for Molecular Medicine Cologne (CMMC)
 Robson, Mark; Memorial Sloan Kettering Cancer Center, Medicine
 Rodriguez, Gustavo; NorthShore University HealthSystem, Division of Gynecologic Oncology
 Rogers, Mark; University Hospital of Wales, All Wales Medical Genetics Services
 Rudaitis, Vilius; Vilnius University Hospital Santariskiu Clinics, Department of Gynecology, Centre of Women's Physiology and Pathology
 Schmidt, Ane; Center for Genomic Medicine, Rigshospitalet, University of Copenhagen
 Schmutzler, Rita; University Hospital of Cologne, Department of Gynaecology and Obstetrics
 Senter, Leigha; The Ohio State University, Clinical Cancer Genetics Program, Division of Human Genetics, Department of Internal Medicine, The Comprehensive Cancer Center,
 Shah, Payal; University of Pennsylvania Perelman School of Medicine, Department of Medicine
 Sharma, Priyanka; University of Kansas Medical Center, Department of Hematology and Oncology
 Side, Lucy ; North East Thames Regional Genetics Service, Great Ormond Street Hospital for Children NHS Trust
 Simard, Jacques; Cancer Genomics Laboratory, Anatomy and Physiology Singer, Christian; medical university of vienna,
 Skytte, Anne-Bine; Aarhus University Hospital , Department of Clinical Genetics
 Slavin, Thomas; City of Hope, Clinical Cancer Genetics
 Snape, Katie; St George's, University of London, Medical Genetics Unit Sobol, Hagay; Institut Paoli-Calmettes, Cancer Genetics; Aix-Marseille Universite Faculte de Medecine,
 Southey, Melissa; The University of Melbourne, Pathology
 Steele, Linda; Beckman Research Institute, Clinical Cancer Genetics Steinemann, Doris; Hannover Medical School, Institute of Cell and Molecular Patology
 Sukiennicki, Grzegorz; Pomeranian Medical School, Department of Genetics and Pathology
 Sutter, Christian; Institute of Human Genetics, University of Heidelberg Szabo, Csilla; National Institutes of Health, National Human Genome Research Institute
 Tan, Yen Yen; Medical University of Vienna, Department of OB/GYN Teixeira, Manuel; Portuguese Oncology Institute-Porto, Dept. Genetics Terry, Mary Beth; Columbia University , Department of Epidemilogy Teulé, Alex; Institut Català d'Oncologia-IDIBELL, Programa de Consell Genètic en Càncer
 Thomas, Abigail; Mayo Clinic , Department of Health Sciences Research

[^1]: John Wiley \& Sons, Inc.

