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ABSTRACT  

A crucial step for accelerating tuberculosis drug development is bridging the gap between pre-

clinical and clinical trials. In this study, we developed a pre-clinical model-informed 

translational approach to predict drug effects across pre-clinical systems and early clinical 

trials using the in vitro-based Multistate Tuberculosis Pharmacometric (MTP) model using 

rifampicin as an example. The MTP model predicted rifampicin biomarker response observed 

in (i) a hollow-fiber infection model, (ii) a murine study to determine PK/PD indices, and (iii) 

several clinical phase IIa early bactericidal activity (EBA) studies. In addition, we predicted 

rifampicin biomarker response at high doses of up to 50 mg/kg, leading to an increased 

median EBA0-2 days (90% prediction interval) of 0.513 log CFU/mL/day (0.310; 0.701) 

compared to the standard dose of 10 mg/kg of 0.181 log/CFU/mL/day (0.076; 0.483). These 

results suggest that the translational approach could assist in the selection of drugs and doses 

in early-phase clinical tuberculosis trials.  
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INTRODUCTION 

The current treatment paradigm for drugs and doses used in treatment of tuberculosis (TB) is 

not based on pharmacokinetic and pharmacodynamic (PKPD) principles
1
. To make progress 

more rapid we need to harness the power of pharmacokinetic pharmacdynamic (PKPD) 

principles when developing new regimens. The Multistate Tuberculosis Pharmacometric 

(MTP) model is a semi-mechanistic pharmacometric model describing the growth and drug 

effects on different bacterial sub-states, including phenotypically resistant non-culturable 

(dormant) bacteria
2,3

. This transient phenotypic resistance allows the bacteria to persist under 

drug exposure, to a much larger degree than bacteria which exhibit active multiplication, and 

is thus thought to be a cause of patient relapse
4
. As such, the estimation and prediction of drug 

effects on this phenotypic resistant sub-population is crucial in order to develop and predict a 

successful treatment regimen. The MTP model was developed using in vitro information from 

classical time-kill experiments and has been successful in describing the effects after exposure 

to rifampicin not only for in vitro in monotherapy but also for assessing efficacy of drug 

combinations in vitro together with the General Pharmacodynamic Interaction model
5,6

,  in 

vivo monotherapy
7
, in vivo assessment of drug combinations

8
 and clinical settings

9
 suggesting 

its value for describing drug effects as well as for translational applications.  

Phase IIa is the first trial conducted in patients for TB drug development. These trials are most 

often monotherapy trials designed to provide information on a compounds’ bactericidal 

activity after different doses
10–12

. Traditionally the measure of activity is early bactericidal 

activity (EBA) which is the daily decrease in log10 colony forming units (CFU) during the 

first two days of treatment (EBA0-2) or the first 14 days of treatment (EBA0-14)
13

. The 

currently employed approach to dose selection for phase IIa trials is based on targeting a 

PK/PD index using probability of target attainment (PTA) where the target often is defined A
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from long-term mouse experiments
14

. Quantitative information on the PKPD relationship for 

the antibiotics is ignored by using such summary variables as PK/PD index. This may be 

particular important in the field of TB where the effect is not immediate but takes long time 

until cure is reached ie response cannot only be predicted using drug exposure and sensitivity 

(MIC) but biomarker response need to be incorporated into the predictions. The MTP model 

has been shown to be superior in defining statistical significant drug effects in early clinical 

trials in TB drug development compared to standard approaches
15

. 

The in vitro hollow fiber system model of TB (HFS-TB) is an in vitro pre-clinical system 

which has shown accuracy in predicting PK/PD indices
16

 and which recently received a 

positive qualification opinion by the European Medicines Agency’s Committee for Medicinal 

Products for Human Use for exploring dose and regimen selection in anti-TB drug 

development programs
17

.  

In this work, we aimed to develop a translation approach using in vitro information in order to 

predict biomarker response in other pre-clinical systems and in early clinical trials using the 

MTP model as a framework<sup>18</sup><sup>18</sup><sup>18</sup><sup>18</sup>. 

Finally, a sensitivity analysis was performed to explore the impact of the translational factors 

on the predictions of biomarker response in pre-clinical systems and in EBA trials.  
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RESULTS 

The translational MTP model 

All model components, i.e. the human rifampicin PK model
19

, the epithelial lining fluid model 

(ELF) model
20

 and the MTP model
2
 were developed earlier and linked in this work (Figure 1). 

All parameter values used for the translational predictions are presented in Table 1. The 

following translational factors were included into the linked models, which were required to 

accurately predict the target systems (hollow-fiber infection model, murine lung infection 

model and clinical phase IIa early bactericidal activity study):  

1) The minimal inhibitory concentration (MIC); We developed a MIC scaling term to account 

for differences in mycobacterial susceptibility between the mycobacterial isolates used in the 

different systems. The MIC scaling term was used to scale the drug potency measures (EC50 

or slope) of the MTP model to predict from the original system to the target system.   

2) The post-antibiotic effect (PAE); i.e. persistent drug effects that are present after removal 

of the drug. The PAE model was developed in this work using PAE information from Gumbo 

et al 
21

. The final PAE model consisted of an effect compartment with a fast zero-order rate 

(ke,in) from the rifampicin concentrations into the effect compartment and a saturable 

Michaelis-Menten kinetics (parameterized by ke,out,max and ke,out,50) describing the elimination 

from the effect compartment. This model had a 12 points lower AIC compared to a model 

with first-order linear equilibrium rate constant. Predicted PAE versus observed PAE values 

are presented in Table 2.  

3) Differences in the maximum bacterial burden (Bmax) in the target system; The estimate for 

Bmax was obtained from Gumbo et al.
21

 for prediction of the hollow-fiber study and estimated 

for the murine lung infection model from the digitalized experimental data of the mouse A
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study
22

. For the prediction of the clinical phase IIa EBA study, Bmax was set to the value 

obtained in vitro due to the lack of this information in EBA studies as bacterial burden 

without drug treatment is commonly not obtained due to ethical reasons.  

4) The bacterial growth state; which was controlled by the pre-incubation period before 

rifampicin treatment was initiated, which was 4 days and 30 days for hollow-fiber system and 

mouse study, respectively. For prediction of the phase IIa EBA study, a period of 150 days 

was assumed before treatment was initiated. The linked models (PK, ELF, MTP) including all 

translational factors is referred to as the translational MTP model in the following. A detailed 

description of the components of the translation MTP model is given in the methods section. 

All predictions were made using the translational MTP model with translational factors and 

with no parameters estimated from the target experimental or clinical data apart from the 

bacterial growth properties for the hollow-fiber system and the mouse experiments. 

 

Prediction of hollow-fiber experiments 

The predictions of the different hollow fiber experiments with and without rifampicin (growth 

control, 600 mg once daily, 2100 mg twice weekly or 4200 mg once weekly) using the H37Ra 

in vitro strain is presented in Figure 2. The translational MTP model predicted the hollow-

fiber regimens very well apart from some over-prediction at >4 days after start of rifampicin 

treatment in the once-weekly scenario. 

 

Prediction of PK/PD indices in a murine lung infection model 

The rifampicin drug effect at day 6 in a murine lung infection model (Figure 3, upper panel) 

correlated best with the PK/PD index AUC0-∞/MIC (R² = 0.93) and Cmax/MIC (R² = 0.78). The A
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patterns of the predicted PK/PD indices by the translational MTP model (Figure 3, lower 

panel) were in good agreement with the observed PK/PD indices and identified the same 

indices to be correlated with the effect of rifampicin (AUC0-∞/MIC: R² = 0.97, Cmax/MIC: R² = 

0.97, %T>MIC: R² = 0.67). Moreover, the translational MTP model also predicted the 

magnitude of the observed in vivo effects. For instance, for a half-maximum reduction of log 

CFU/mL in the mice, a Cmax/MIC of 58 or an AUC0-∞/MIC of 4320 was required, whereas a 

Cmax/MIC of 168 or an AUC0-∞/MIC of 2040 was predicted by the translational MTP model.   

 

Prediction of clinical early bactericidal activity phase IIa studies 

The translational MTP model including variability of rifampicin in PK and PD predicted the 

clinical dose-response curve for up to 14 days as observed in EBA trials (Figure 4a). For 

EBA0-2days and a dose of 10 mg/kg, a median EBA (90% prediction interval) of 0.181 log 

CFU/mL/day (0.076; 0.483) was predicted. The EBA0-5days was 0.201 (0.078; 0.484), and the 

EBA0-14days was 0.202 (0.087; 0.343) for the 10 mg/kg rifampicin dose. The EBA0-2 days for 35 

mg/kg high dose regimen
23

 was 0.442 log CFU/mL/day (0.238; 0.674). The EBA0-5days was 

0.465 (0.259; 0.682), and the EBA0-14days was 0.327 (0.227; 0.677) for the 35 mg/kg rifampicin 

dose. The predictions of the translational MTP model were in accordance with the results of 

several clinical trials 
14,23–27

 (Figure 4a). 

We also assessed a further increased rifampicin dose to 50 mg/kg which exceeds the current 

clinically investigated dose range capped at 35 mg/kg. The 50 mg/kg dose was predicted to 

yield an EBA0-2 days of 0.513 log CFU/mL/day (0.310; 0.701), i.e. a modest increase compared 

to the 35 mg/kg dose. The EBA0-5days was 0.542 (0.333; 0.711), and the EBA0-14days was 0.465 

(0.249; 0.711) for the 50 mg/kg rifampicin dose, where a more substantial increase in the 

EBA0-14days was observed compared to the 35 mg/kg dose. A
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The MIC as a source of inter-individual variability in EBA is depicted in Figure 4b. The 

predicted median EBA0-2days at 10 mg/kg and a MIC value of 0.125 mg/L was 0.235 log 

CFU/mL/day (0.175; 0.286). However, a much lower median EBA0-2days of 0.083 log 

CFU/mL/day (0.062; 0.103) was predicted for MIC values of 0.5 mg/L at a dose of 10 mg/kg 

daily. An increased dose of 35 mg/kg predicted a higher EBA and might be particularly 

beneficial for patients with high MIC where a median EBA0-2days of 0.254 log CFU/mL/day 

(0.203; 0.297) was predicted for MIC values of 0.5 mg/L (Figure 4b).  

Another source of variability in EBA originated from inter-individual differences in 

rifampicin PK (Figures 4 c-d). It is evident that the inter-individual variability in rifampicin 

concentrations is particularly high during the first days of rifampicin treatment due to inter-

individual variability in onset of enzyme auto-induction processes (Figure 4d). 

An outline of the different components of the final preclinical to clinical forecasting in 

tuberculosis drug development using the translational MTP model approach is seen in Figure 

5. 

 

Sensitivity analysis 

A sensitivity analysis was performed to assess the impact of the translational factors on the 

predictions. Each of the translational factors was excluded one at a time. Omitting a 

translational factor did not negatively influence the translational predictions in all target 

systems similarly, but resulted in worse predictive performance in at least one target system.  

Exclusion of the PAE model substantially affected the predictions of the hollow-fiber system 

(under-prediction of the effect, Figure S1) and the clinical phase IIa EBA trial (under-A
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prediction of the median effect, Figure S4 a), while the impact on the PK/PD index study in 

mice was less pronounced (Figure S3 a).  

Exclusion of the MIC scaling term or a wrong MIC scaling affected the PK/PD index study 

(under-prediction of the effect, Figure S3 b) and the phase IIa trial (under-prediction of 

variability, Figure S4 b), while the hollow-fiber system (Figure S2) was least affected.  

When a wrong pre-incubation period was used, all target systems were affected. When the 

pre-incubation period was wrongly set to 150 days instead of 4 days in the hollow-fiber 

prediction, a tendency to a lower drug effect was observed due to the lower susceptibility due 

to the higher abundance of S and N state mycobacteria (Figure S5). Conversely, if a pre-

incubation period of 4 days instead of 30 days was used for the prediction of the murine lung 

infection model, a tendency to over-prediction of the antibacterial effects was observed 

(Figure S6). For clinical prediction, a pre-incubation period of 4 days instead of 150 days 

particularly affected the prediction of EBA0-5days and EBA0-14days, where even a negative EBA 

was predicted at low doses due to the active growth of the mycobacteria (Figure S7). In the 

clinical data, no variability of ELF penetration was quantifiable due to the study design; 

however, assumption of 30% variability in RELF/plasma only marginally increased the variability 

in EBA (Figure S8).  

A
cc

ep
te

d 
A

rt
ic

le



 

 

DISCUSSION  

In this study, we developed a model-informed MTP translational approach for predicting 

biomarker response from in vitro time-kill studies whilst taking into account differences in 

drug susceptibility, post-antibiotic effect, PK and target site distribution along with innovative 

and quantitative PKPD modeling methods. We were able to demonstrate a good predictive 

performance for this innovative translational approach since it correctly predicted the results 

from other pre-clinical systems (hollow-fiber model and murine lung infection model) and 

phase IIa dose ranging studies using rifampicin as a model drug. 

The good predictive performance of our approach for predicting important pre-clinical and 

clinical phase IIa TB trials suggest that this approach can be used prospectively to design 

several key studies in TB drug development, and might be even more useful when extended to 

drug combinations. Optimization of doses and combinations prior to Phase III is still a critical 

obstacle in the TB drug development pathway. Although the acceptance of PKPD methods 

throughout drug development is increasing, the reliance on traditional methods for assessing 

drug effects is troublesome. This is especially worrying for diseases with weak market 

incentives and few active drug development programs, such as TB, where failure due to 

clinically un-predictive methods is unacceptable which makes our suggested approach a 

relevant tool to aid in TB drug development. 

The current employed approach for dose selection in phase 2 for antibiotics relies on the use 

of PK/PD indices which have been shown to be sensitive to both experimental design, MIC 

and PK suggesting that this approach may not be optimal for dose selection for early clinical 

trials
28–31

. For TB, this may be particularly relevant due to the difficulty in validating PK/PD 

indices in the clinic, requiring extensive trial durations for studying relapse (18 months) and 

the general high treatment success rate for the standard treatment regimen (95%). Further, A
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only considering drug exposure and bacterial susceptibility (MIC) might be a too simplistic 

approach in the field of TB where cure occurs after a long treatment period as compared to 

more general infections with a much shorter treatment period and where the aim is to “hit hard 

and fast”. 

What differentiates this translational framework from previous more simplistic pre-clinical to 

clinical prediction efforts
32

 are mainly that our translational MTP approach is driven by target 

site concentration together with human plasma concentrations instead of only the latter, and 

consideration of MIC strain differences according to EUCAST published distributions as well 

as dynamic drug exposure by inclusion of PAE. In future studies, the PAE model may be 

refined by estimating its parameters from measured CFU vs. time curves instead of using the 

rather imprecise PAE itself. This requires a slightly more labour-intense setup of the PAE 

experiment, but will increase the precision of the parameters of the PAE model in further 

applications of our approach. Moreover, optimally designed ELF studies are highly warranted 

to better characterise the variability of ELF penetration. However, perhaps the most important 

aspect is that the MTP model allows for quantification of drug effects on non-multiplying 

(dormant) bacteria
2
. Non-multiplying bacteria  can be quantified using resuscitation 

promoting factors (RPFs) 
33

. The MTP model approach allows for a correct estimation of drug 

effect against non-multiplying bacteria which is crucial for a model-based translational 

approach. This aspect will be particularly important, when the approach will be extended to 

prediction of later end points such as the occurrence of relapse or to explore shortening of the 

treatment duration, which were not addressed in the present study.   

Rifampicin was used as model drug in this work which is relevant because rifampicin is part 

of current core treatment for susceptible TB and is under current clinical investigation for 

increasing the dose. A wide dose range of rifampicin has been studied and our predictions A
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were validated against results of contemporary high dose rifampicin studies of up to 35 mg/kg 

rifampicin daily. In addition, the response following 50 mg/kg was predicted - a dose level not 

yet studied. These predictions indicate that a further, but modest increase in rifampicin EBA 

might be attainable at 50 mg/kg compared to 35 mg/kg. Although the concentrations achieved 

with a 50 mg/kg dose were covered by the PD side of our approach, PK was formally only 

studied up to 40 mg/kg
19

, and hence our predictions represent a slight extrapolation out of the 

data space. As the maximum effects of all identified non-linearities in rifampicin PK have 

been well captured, the accuracy of the extrapolation might be acceptable in this case. Though 

our prediction of 50 mg/kg rifampicin is encouraging it should be highlighted that our 

suggested approach only predicts the bacteriological response and does not incorporate 

safety/toxicity components which could limit the use of even higher doses, as e.g. the 

occurrences of flu-like symptoms observed with large intermittent dosing of rifampicin or yet 

unknown adverse effects. In future studies, our approach might be also useful to help in the 

identification of an intermittent dosing regimen that provides similar efficacy as daily dosing 

regimens. 

 

METHODS 

The Multistate Tuberculosis Pharmacometric (MTP) model 

The MTP model was previously developed based upon the hypoxia-driven in vitro 

information described above
2
. The mathematical model consists of three bacterial states: fast- 

(F), slow- (S) and non-multiplying (N) bacteria. In the MTP model, the sum of F and S is 

assumed to represent culturable bacteria, i.e. CFU, whilst N represents a non-culturable state 

of the mycobacteria that does not appear on solid media
2,33

. The differential equation systems 

for F (Equation 1), S (Equation 2) and N (Equation 3) bacterial states were as follows: A
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dF

dt
= kG ∙ F ∙ log (

Bmax

F+S+N
) ∙ (1 − FGk ∙ CRIF) + kSF ∙ S − kFS ∙ F   

           −kFN ∙ F − (
FDEmax∙CRIF

FDEC50+CRIF
) ∙ F       Eq. 1                                           

 
dS

dt
= kFS ∙ F + kNS ∙ N − kSF ∙ S − kSN ∙ S − (

SDEmax∙CRIF

SDEC50+CRIF
) ∙ S   Eq. 2                                

 
dN

dt
= kSN ∙ S − kNS ∙ N + kFN ∙ F − NDk ∙ N    Eq. 3                                                                

 

The definitions and values of parameters used are listed in Table 1. 

 

Pharmacokinetics of rifampicin in the different target systems 

To account for PK differences between the in vitro system used to estimate drug effects in the 

MTP model and the target systems for translational prediction i.e. hollow-fiber infection 

model, mouse and human, a relevant PK model of the target system was linked to the MTP 

model. For the hollow-fiber system, the PK parameters were obtained from Gumbo et al
21

 and 

are presented in Table 1. For predictions in the mouse, the unbound murine plasma 

concentration-time profiles were linked to the MTP model. The murine PK parameters were 

estimated from digitalized PK data from Jayaram et al
22

 and are presented in Table 1. For 

prediction of the clinical phase IIa EBA study, the concentration-time profile in the epithelial 

lining fluid, predicted using the General Pulmonary Distribution model
20

 and a human plasma 

PK model
19

, were linked to the MTP model. The covariates of the human PK rifampicin 

model (weight and height) were set to values typically observed in TB patients
19

 and sampled A
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from log-normal distributions with geometric mean of 60 kg for weight and 1.75 m for height. 

Geometric standard deviation was set to 10% for weight and 7.5% for height, respectively.  

 

Translational factors and development of the translational MTP model 

The PK model for each translational target, as described above, was linked to the MTP model. 

The following translational factors were accounted for in the MTP model in order to create the 

model-informed MTP translational approach; PAE, mycobacterial susceptibility, bacterial 

carrying capacity and the bacterial growth phase.  An outline of the translational MTP model 

is presented in Figure 1.  

We utilized the MIC to account for differences in mycobacterial susceptibility between the in 

vitro system and the predicted target systems (hollow-fiber system, mouse and human). The 

MIC values in the target system (MICtarget) in relation to the MIC in the in vitro system used to 

estimate drug effects (MICorigin) were used to scale the parameters for drug effects in the target 

system, i.e. EC50target (Eq. 4) or slopetarget (Eq. 5) from the parameters obtained from the in 

vitro data (EC50origin or slopeorigin):  

 

𝐸𝐶50𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐸𝐶50𝑜𝑟𝑖𝑔𝑖𝑛 × (
𝑀𝐼𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑀𝐼𝐶𝑜𝑟𝑖𝑔𝑖𝑛
)    Eq. 4  

𝑠𝑙𝑜𝑝𝑒𝑡𝑎𝑟𝑔𝑒𝑡 = 𝑠𝑙𝑜𝑝𝑒𝑜𝑟𝑖𝑔𝑖𝑛/ (
𝑀𝐼𝐶𝑡𝑎𝑟𝑔𝑒𝑡

𝑀𝐼𝐶𝑜𝑟𝑖𝑔𝑖𝑛
)    Eq. 5   

 

The uncertainty in MIC determination is usually assumed to be within +/- 1 log2 units, also 

for mycobacteria
34

. In order not to bias our predictions by the use of a singular MIC value, we 

performed a literature search for the two common pre-clinical strains H37Ra (used in the A
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hollow-fiber study
21

) and H37Rv (used for development of the MTP model
2
) and determined 

the most-likely ratio, i.e. the mode of MICtarget/MICorigin distribution by means of 

bootstrapping
35

. The MIC distributions used for bootstrapping are presented in Figure S9. For 

prediction of clinical phase IIa EBA studies, the EUCAST clinical MIC distribution of 

rifampicin was used
36

 from which random samples were drawn to parameterize the 

MICtarget/MICorigin ratio. 

An effect compartment model, here termed as the PAE model, was developed which was 

linked to the PK and the MTP model to account for persistent drug effects after removal or 

decline of rifampicin concentrations. The PAE model was developed by modelling the PAE 

experiment data described in Gumbo et al.
21

 and derived the time to grow 1 log CFU/mL as a 

function of drug concentration and exposure time. Different parametrizations of the PAE 

model (first order or zero order effect delay rate constants) were evaluated to describe the 

PAE of rifampicin.  The final PAE model accounted for a rapid equilibrium of rifampicin in 

the effect compartment with rifampicin concentrations at the target site (CPAE), followed by a 

Michaelis-Menten type decay of the concentrations in the PAE compartment: 

 

dCPAE

dt
= ke,in  −  

ke,out,max×CPAE

ke,out,50+CPAE
    Eq. 6 

with ke,in = ke,in if CPAE ≤ Ctarget site and ke,in = 0 if CPAE > Ctarget site 

and where ke,out,max is the maximal elimination rate from the PAE compartment, ke,put,50 is the 

concentration at which 50% of the ke,out,max is seen and ke,in is the rate constant for rifampicin 

entering into the PAE compartment.  

For differences in the maximal growth capacity in the system, the bacterial carrying capacity 

parameter Bmax was adapted to the target system (Table 1). The bacterial growth phase of the A
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target system was accounted for by simulating a pre-incubation period before rifampicin 

treatment was initiated. The simulated pre-incubation period was identical to the 

experimentally employed pre-incubation periods in the target systems, which were 4 days and 

30 days for hollow-fiber system and mouse study, respectively. For prediction of the phase IIa 

EBA study, a period of 150 days was assumed before treatment was initiated to simulate an 

established infection. 

 

Translational prediction from in vitro to the target systems 

The translational MTP model was utilized to predict three typically used systems in pre-

clinical and early clinical TB drug development: (i) the hollow-fiber infection model, (ii) the 

murine-based PK/PD indices, and (iii) clinical EBA studies. The model parameters used for 

the translational predictions into the three systems are presented in Table 1.  

For translational prediction of rifampicin in hollow-fiber experiments
21

, several scenarios 

were predicted: a growth control (GC), 600 mg rifampicin once daily, 2100 mg rifampicin 

twice weekly and 4200 mg rifampicin once weekly, each over a period of 7 days. 

For prediction of a murine dose fractionation study
22

, total doses of 2, 6, 18, 60, 180, 540, 

1080 or 1620 mg/kg rifampicin were fractionated as either one, three, or six times in a 

treatment period of 144 hours. Doses of 4860 or 3240 mg/kg were not included in the 

simulations as in the original study for toxicity reasons
22

. Three different PK/PD indices;  

Cmax/MIC, AUC0-∞/MIC and %T>MIC were calculated from the simulations as in the original 

study
22

 using the non-compartmental PK estimates presented in the original article
22

 in order 

to ascertain comparability. The model-predicted PK/PD indices were then compared to the 

indices observed in mice. Nonlinear regression analysis was utilized to assess the correlation A
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between log CFU/mL at day 6 and the predicted PK/PD indices by the coefficient of 

determination (R²). For a quantitative comparison, the PK/PD index at half of the maximum 

reduction of log CFU/mL was calculated for the observed and predicted PK/PD indices.  

The predicted clinical phase IIa EBA study consisted of 14 days of rifampicin once daily of 

monotherapy at 2.5, 5, 10, 15, 20, 25, 30, 35 or 50 mg/kg. Early bactericidal activity was 

calculated as the difference in log10 CFU/mL before treatment and at 2, 5 or 14 days. The 

predicted EBA was compared to observed EBA 0-2 days, 0-5 days and 0-14 days from 

numerous clinical studies 
14,23–27

. 

 

Sensitivity analysis 

To explore the impact of the translational factors on prediction of the three translational target 

systems, a sensitivity analysis was performed by excluding or modifying one translational 

factor at a time from the final translational MTP model. 

 

Software, estimation and simulation  

All modelling and simulation tasks were performed in ‘R’ (version 3.3.3). Differential 

equation systems were solved using the lsoda routine of the ‘deSolve’ package (version 1.14). 

The predictions in ‘R’ were successfully cross-validated against NONMEM® (7.3, ICON, 

Hanover, USA) and the results were identical to 1e-8. ‘ggplot2’ (version 2.2.1) was used for 

generating plots. Parameters of the PAE model (kin, kout,max, kout,50) and murine PK parameters 

(CL, ka, Vd, cf. Table 1) were estimated using the R package ‘optim’ using extended least 

squares regression. Nested models were compared using the likelihood ratio test, e.g. a 3.84 

difference in the objective function value was required to select a more complex model for A
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one degree of freedom and at a significance level of 5%. For comparison of non-nested 

models, the Akaike criterion was used 
37

, where a lower Akaike score is favourable.  
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STUDY HIGHLIGHTS 

What is the current knowledge on the topic?  

The current treatment paradigm (drugs and doses) used in treatment of tuberculosis is not 

based on pharmacokinetic and pharmacodynamic (PKPD) principles. 

What question did this study address?  

How to optimally select clinical anti-tuberculosis drug doses from preclinical studies using a 

translational pharmacometric approach? 

 What does this study add to our knowledge?  

The study describes a model-informed, in vitro-based, translational approach to accurately 

predict the biomarker response across other pre-clinical systems and phase IIa early 

bactericidal activity studies using rifampicin as an example. 

How might this change clinical pharmacology or translational science? 

The approach described in the study may help to inform decision making for dose selection in 

the planning of phase II studies using tuberculosis in vitro information. In addition, the effects 

of high dose rifampicin were evaluated suggesting a clinical potential for doses up to 50 

mg/kg considering only efficacy and not safety/toxicity.  
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FIGURE LEGENDS 

Figure 1: Compartmental sketch of the translational Multistate Tuberculosis Pharmacometric 

(MTP) model; left: pharmacokinetic models of each target system; right: pharmacodynamic 

MTP model; abbreviations are explained in the manuscript text and in Table 1 

 

Figure 2: Prediction of hollow-fiber system experiments with rifampicin against M. 

tuberculosis H37Ra; GC: growth control experiment; 600 mg once daily (OD) dosing, 2100 

mg twice daily; 4200 mg once weekly; unbound rifampicin (RIF) pharmacokinetics (upper 

panels) and pharmacodynamic effect over time (lower panels); circles (experimental data, 

CFU/mL); predictions of the N state (red), S state (yellow), F state (green) and CFU/mL 

(black dashed; sum of F+S) 

 

Figure 3: Prediction (upper panel) of PK/PD indices Cmax/MIC, AUC0-∞/MIC and %T>MIC of 

rifampicin as observed (lower panel) in a murine lung infection model at day 6; red line 

represents regression line from an inhibitory sigmoidal maximum effect model 

 

Figure 4: a) Prediction (median, 10
th

 to 90
th

 percentile) of clinical early bactericidal activity 

(EBA0-2days, EBA0-5days, EBA0-14days) for rifampicin doses of 2.5 to 50 mg/kg and observed 

EBA (points) for clinical trials; b) Predicted impact of the mycobacterial minimum inhibitory 

concentration (MIC) on the obtained EBA for the 10 mg/kg dose (left) and the 25 mg/kg dose 

(right); c) Predicted impact of pharmacokinetic variability (expressed as fAUC24h and fCmax) 

on the obtained EBA of rifampicin; d) pharmacokinetic variability of rifampicin exemplified 

for the 35 mg/kg dose  

 A
cc

ep
te

d 
A

rt
ic

le



 

 

Figure 5: An outline of the different components of the final preclinical to clinical forecasting 

in tuberculosis drug development using the translational MTP model approach.  
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SUPPLEMENTARY MATERIALS 

Figure S1: Sensitivity analysis of the translational Multistate Tuberculosis Pharmacometric 

(MTP) model and prediction of the hollow-fiber experiment; exclusion of the post-antibiotic 

effect (PAE) model, i.e. direct link of pharmacokinetic and pharmacodynamic. For a detailed 

figure legend, refer to Figure 2. 

 

Figure S2: Sensitivity analysis of the translational Multistate Tuberculosis Pharmacometric 

(MTP) model and prediction of the hollow-fiber experiment; exclusion of the minimum 

inhibitory concentration (MIC) scaling term, i.e. assuming the same MIC for H37Ra as for 

H37Rv. For a detailed figure legend, refer to Figure 2. 

 

Figure S3: Sensitivity analysis of the translational Multistate Tuberculosis Pharmacometric 

(MTP) model and prediction of the murine PK/PD indices; a) exclusion of the effect 

compartment, i.e. direct link of PK and PD; b) wrong minimum inhibitory concentration 

(MIC) scaling term, i.e. assuming H37Ra instead of H37Rv. For a detailed figure legend, refer 

to Figure 3. 

 

Figure S4: Sensitivity analysis of the translational Multistate Tuberculosis Pharmacometric 

(MTP) model and prediction of clinical early bactericidal activity (EBA); a) exclusion of the 

effect compartment, i.e. direct link of PK and PD; b) no minimum inhibitory concentration 

(MIC) scaling term, i.e. assuming H37Rv susceptibility for all clinical M. tuberculosis strains. 

For a detailed figure legend, refer to Figure 4. 
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Figure S5: Sensitivity analysis of the translational Multistate Tuberculosis Pharmacometric 

(MTP) model and prediction of the hollow-fiber experiment; pre-incubation period of 150 

days instead of 4 days. For a detailed figure legend, refer to Figure 2. 

 

Figure S6: Sensitivity analysis of the translational Multistate Tuberculosis Pharmacometric 

(MTP) model and prediction of the murine PK/PD indices; wrong pre-incubation period; 4 

days instead of 30 days. For a detailed figure legend, refer to Figure 3. 

 

Figure S7: Sensitivity analysis of the translational Multistate Tuberculosis Pharmacometric 

(MTP) model and prediction of clinical early bactericidal activity (EBA); wrong pre-

incubation period; 4 days instead of 30 days. For a detailed figure legend, refer to Figure 3. 

 

Figure S8: Sensitivity analysis of the translational Multistate Tuberculosis Pharmacometric 

(MTP) model and prediction of clinical early bactericidal activity (EBA); assumption of 30% 

variability of RELF/plasma instead of using the population estimate. For a detailed figure legend, 

refer to Figure 3. 

 

Figure S9: Minimum inhibitory concentration (MIC) distribution for rifampicin of a) H37Ra, 

b) H37Rv and c) clinical mycobacterium tuberculosis isolates (EUCAST)  
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Table 1: Parameters of the translational Multistate Tuberculosis Pharmacometric (MTP) model used for the translational predications into the target 

systems. 

Parameter Description Value  Source reference 

Pharmacodynamics (MTP model) 

kFN [days
-1

] Transfer rate from fast- to non-multiplying state 0.897×10
-6

 (4) 

kSN [days
-1

] Transfer rate from slow- to non-multiplying state 0.186 (4) 

kSF[days
-1

] Transfer rate from slow- to fast-multiplying state 0.0145 (4) 

kNS [days
-1

] Transfer rate from non- to slow-multiplying state 0.123×10
-2

 (4) 

kFS,lin [days
-2

] Time-dependent transfer rate from fast- to slow-multiplying state 0.166×10
-2

 (4) 

S0 [mL
-1

] Initial bacterial number of slow-multiplying state 9770 

9770∙50 (hollow-fiber) 

(4) 

scaled up from (4) 

kG [days
-1

] Fast-multiplying bacterial growth rate 0.150 (hollow-fiber) 

0.206 (mice) 

0.206 (human) 

estimated 

(4) 

(4) 

F0 [mL
-1

] Initial bacterial number of fast-multiplying state 4.1 (4) 
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4.1∙50 (hollow-fiber) scaled up from (4) 

Bmax [mL
-1

] System carrying capacity 2.02∙10
9 
(hollow-fiber) 

4∙10
6 
(mice) 

2.42∙10
8 
(human) 

(17) 

estimated from (39) 

(4) 

FGk [L∙mg
-1

] Linear inhibition of fast-multiplying bacterial growth 0.017 (4) 

FDEmax [days
-1

] Maximal fast-multiplying bacterial death rate 2.15 (4) 

FDEC50 [mg∙L
-1

] Rifampicin concentration at which half FDEmax is reached 0.52 (4) 

SDEmax [days
-1

] Maximal slow-multiplying bacterial death rate 1.56 (4) 

SDEC50 [mg∙L
-1

] Rifampicin concentration at which half SDEmax is reached 13.4 (4) 

NDk [L∙mg∙days-
1
] Linear non-multiplying death rate 0.24 (4) 

Link between pharmacokinetics and pharmacodynamics  

ke,in [days
-1

] Transfer rate constant into the effect compartment 150 estimated from (22) 

ke,out, max [days
-1

] Maximal transfer rate from the effect compartment 1.091 estimated from (22) 

ke,out,50 [mg∙L
-1

] Rifampicin concentration at which half ke,out,max is reached 0.662 estimated from (22) 
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Pharmacokinetics 

Hollow-fiber system 

t1/2 [h] Half-life of elimination 3 (22) 

fu [-] Fraction unbound 0.2 (22) 

Vd [L] Volume of distribution 60 (22) 

Murine lung infection model 

CL [L∙days
-1

] Clearance 0.66 (dose ≤ 1 mg/kg) 

1.03 (1 mg/kg < dose < 

90 mg/kg) 

2.29 (dose ≥ 90 mg/kg) 

estimated from (39) 

ka [days
-1

] Absorption rate constant 19.6 estimated from (39) 

Vd [L∙kg
-1

] Volume of distribution 1.3 estimated from (39) 

fu [-] Fraction unbound 0.03 (40)  

Clinical Phase IIa 

Vmax [mg∙h
-1

∙70 kg
-1

] Maximal elimination rate 525 (20) 
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km [mg∙L
-1

] Rifampicin concentration at which half Vmax is reached 35.3 (20) 

Vd [L∙70 kg
-1

] Volume of distribution 87.2 (20) 

ka [h
-1

] Absorption rate constant 1.77 (20) 

MTT [h] Mean transit time 0.513 (20) 

NN [-] Number of transits 23.8 (20) 

Emax [-] Maximal increase in enzyme production rate 1.16 (20) 

EC50 [mg∙L
-1

] Rifampicin concentration at which half the Emax is reached 0.0699 (20) 

kENZ [h
-1

] First-order rate constant for enzyme pool degradation 0.00603 (20) 

Fmax [-] Maximal increase in relative bioavailability at doses above 450 mg 0.504 (20) 

ED50 [mg] Difference in dose above 450 mg at which half the Fmax is reached 67.0 (20) 

IIV Vmax [%] Inter individual variability in Vmax 30.0 (20) 

IIV km [%] Inter individual variability in km 35.8 (20) 

IIV Vd [%] Inter individual variability in Vd 7.86 (20) 

IIV ka [%] Inter individual variability in ka 33.8 (20) 

IIV MTT [%] Inter individual variability in MTT 38.2 (20) 
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IIV NN [%] Inter individual variability in NN 77.9 (20) 

IOV km [%] Inter occasion variability in km 18.9 (20) 

IOV ka [%] Inter occasion variability in ka 31.4 (20) 

IOV MTT [%] Inter occasion variability in MTT 56.4 (20) 

IOV F [%] Inter occasion variability in F 15.7 (20) 

Correlation Vmax-km [%]  38.9 (20) 

fu [-] Fraction unbound 0.2 (21) 

kELF [h
-1

] Transfer rate constant from plasma to epithelial lining fluid 41.58 (21) 

RELF/plasma [-] Epithelial lining fluid/plasma concentration ratio 0.26 (21) 

IIV; inter-individual variability, IOV; inter-occasion variability  
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Table 2: Observed (in vitro) versus predicted post-antibiotic effects (PAE) obtained after 

exposure to various rifampicin concentrations (0-14 mg/L) for 0-7 h. 

time; concentration Observed PAE [days] Predicted PAE [days] 

0; 0 0 0 

7 h; 2 mg/L 5.3 5.2 

1 h; 7 mg/L 12.3 12.0 

2 h; 7 mg/L 12.3 12.9 

0.5 h; 14 mg/L 19.9 19.3 

Observed data from (22). 
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