SUPPLEMENTAL MATERIAL

Supplementary	/ Table 1. G	Genotyping	platforms	for the	participating	studies
---------------	--------------	------------	-----------	---------	---------------	---------

			Study design			Inclusion	criteria	for SNPs	for SNPs Inclusion/exclusion crite			
Ancestry	Study	Abbreviation		Genotyping array	Genotype calling algorithm	MAF	Call rate	<i>P</i> for HWE	Call rate	Exclusions (e.g., IBS clustering, Mendelian checks, excess heterozygosity)	#SNPs that met QC criteria	Analysis software version
	Age, Gene/Environ ment Susceptibility Study	AGES ¹	Population- based	Illumina HumanExome v.1.0 BeadChip	GenomeStudio combined with the CHARGE joint calling ²	≥0%	≥95%	NA	≥95%	Mismatched reference genotypes; sex mismatch	238015	seqMeta v.1.6
European ancestry N C	Atherosclerosis Risk in Communities study	ARIC ³	Population- based	Illumina HumanExome Beadchip v1.0	GenomeStudio combined with the CHARGE joint calling ²	≥0%	≥95%	N/A	≥89.9%	Plink sex check; relatedness PI_HAT>0.4; genetic cluster check	233,238	seqMeta v1.6.0
	British Genetics of Hypertension	BRIGHT ⁴	Hypertensive Cases	Illumina Human Exome BeadChip v1.0	GenCall + Zcall	≥0%	≥99%	>10 ⁻⁴	≥95% (GenCall) , ≥98% (zCall)	Het: separately <1%, >1% MAF, excl ± 3 SD; IBD: excl. by PI_HAT>0.25; sex mismatch; GWAS discordance	245,322	seqMeta v1.3
	Massachusetts General Hospital Cardiology and Metabolic Patient cohort	CAMP ⁵	Population- based	Illumina HumanExome Beadchip v1.0	GeneCall + Zcall	≥0%	≥95%	>10 ⁻⁶	≥95%	N/A	235,081	seqMeta v1.6.0
	Cardiovascular Health Study	CHS ⁶	Population- based	Illumina HumanExome Beadchip v1.0	GenomeStudio combined with the CHARGE joint calling ²	≥0%	≥95%	N/A	≥97%	N/A	227,006	seqMeta v1.6.0

Ancestry	Study	Abbreviation	Study design	Genotyping array	Genotype calling algorithm	Inclusion	criteria	for SNPs	Inclusion	n/exclusion criteria	#SNPs that met	Analysis software
	Erasmus Rucphen Family Study	ERF ⁷	Population- based family	Illumina Human Exome BeadChip v1.1	BeadStudio and zCall	>0%	≥95%	NA	≥95%	Heterozygous haploid genotypes set to missing; SNPs not present in CHARGE recode file	242,848	seqMeta v1.6.0
	Framingham Heart Study	FHS ⁸	Population- based	Illumina HumanExome Beadchip v1.0	GenomeStudio combined with the CHARGE joint calling ²	≥0%	≥95%	N/A	≥97%	N/A	247,501	seqMeta v1.6.0
	Genes for Cerebral Hemorrhage on Anticoagulatio n	GOCHA ⁹	Population- based	Illumina HumanExome Beadchip v1.0_A	GenCall + Zcall	≥0%	≥95%	>10 ⁻⁶	≥95%	N/A	240,977	seqMeta v1.5.0
	Genetic Regulation of Arterial Pressure In Humans in the Community	GRAPHIC ¹⁰	Population- based	Illumina Human Exome BeadChip v1.0	GenCall + Zcall	≥ 0%	≥95%	>10 ⁻⁴	≥95%	Mismatch reference genotypes, Sex mismatch	246,194	seqMeta v.1.6.0
	INTER99 study	INTER99 ¹¹	Population- based	Illumina HumanExome Beadchip v1.0	GenCall + Zcall	≥0%	≥98%	>10 ⁻⁶	≥95%	 (1) Heterozygosity was calculated separately for MAF<1% and MAF>1%, and samples were dropped judging by plots; (2) cryptic relatedness (related to ≥20 individuals) 	224,872	seqMeta v1.5
	Cooperative Health Research in the Region Augsburg	KORA ¹²	Population- based	Illumina HumanExome Beadchip v1.0	GenCall+ChargeCl uster File	NA	≥95%	NA	No exclusion	Exclusion of samples with PI_HAT>0.1875	232,832	seqMeta

Ancestry	Study	Abbreviation	Study design	Genotyping	Genotype calling algorithm	Inclusion	criteria	for SNPs	Inclusio	n/exclusion criteria	#SNPs that met	Analysis software
	CROATIA- Korcula	Korcula ¹³	lsolate population	Illumina HumanHap 370CNV DUO/QUAD Phase 1	Beadstudio- Gencall v3.0	>0.0001	≥98%	>10 ⁻⁶	>95%	N/A	236,308	seqMeta v1.6.0
	LifeLines Cohort Study	LifeLines ¹⁴	Population- based	Illumina HumanExome Beadchip v1.1	GeneCall + Zcall	≥0%	≥95%	>10 ⁻⁶	≥95%	Exclusion based on PCA and mean IBS	240888	seqMeta v1.6.0
	Utrecht Health Project	UHP ¹⁵	Population- based	Illumina HumanExome BeadChip v1.1	GenomeStudio + zCall	≥0%	≥95%	>10 ⁻³	≥95%	Discordant sex; heterozygosity (keeping samples within 4 SD from the mean); related samples (randomly removing one sample until there were no samples with IBD>0.2); samples from non- European descent (based on manual inspection of PCA results that were calculated with Eigensoft).	241,173	seqMeta v1.6.0
	Multi-Ethnic Study of Atherosclerosis	MESA ¹⁶	Population- based	Illumina HumanExome Beadchip v1.0	GeneCall + Zcall	≥0%	≥95%	>10 ⁻⁶	≥95%	N/A	235,081	seqMeta v1.6.0
	The Netherlands Epidemiology of Obesity	NEO ¹⁷	Population- based	Illumina HumanCoreExom e-24v1-0	GeneCall	≥0%	≥98%	>10 ⁻⁶	≥98%	Outlying individuals were excluded on the basis of relatedness; non- European ancestry; sex discrepancy; heterozygosity.	209,874	seqMeta v1.5
	Rotterdam Study	RS ¹⁸	Population- based	Illumina HumanExome BeadChip v1.0	Illumina GenomeStudio20 11.1	N/A	≥95%	N/A	≥95%	N/A	236,783	seqMeta v1.6.5

Ancestry	Study	Abbreviation	Study design	Genotyping array	Genotype calling algorithm	Inclusion	criteria	for SNPs	Inclusion	n/exclusion criteria	#SNPs that met	Analysis software
	Generation Scotland: Scottish Family Health Study	GS:SFHS ¹⁹	Population- based with enrichment for families	HumanOmniExpr essExome8v1- 2_A and HumanOmniExpr essExome-8v1_A	Beadstudio- Gencall v3.0	>0.0001	≥98%	>10 ⁻⁶	≥97%	N/A	234,035	seqMeta v1.6.0
	Study of Health in Pomerania	SHIP ²⁰	Population- based	Illumina HumanExome Beadchip v1.0	Gencall (Illumina Genome Studio), followed by zCall	≥0%	≥95%	>10 ⁻⁴	≥98%	High heterozygosity and/or implausibly high cryptic relatedness; IBS clustering; unexpected duplicates; sex mismatches	247,039	seqMeta v1.3
	TwinsUK	TwinsUK ²¹	Twin study	Illumina HumanExome Beadchip HumanExome 12v1.0	Gencall	≥0%	≥95%	>10 ⁻⁶	≥97%	Autosomal heterozygosity outliers (+/- 4SD (calculated for variants with MAF <1% and MAF >=1% separately), gender mismatches, ethnic outliers as determined by combining with 1000 Genomes Project data (PCA), GWAS concordance)	246,001	seqMeta v1.3
	Women's Health Initiative	WHI ²²	Population- based	Illumina HumanExome Beadchip v1.0	GeneCall + Zcall	NA	>95%	NA	NA	First degree relatives	246303	seqMeta
	Young Finns Study	YFS ²³	Population- based	Illumina HumanCoreExom e-12 Beadchip v1.0	GenCall	≥0%	≥95%	>10 ⁻⁶	≥95%	IBS clustering	238,194	seqMeta v1.3

Ancestry	Study	Abbreviation	Study design	Genotyping	Genotype calling	Inclusion	criteria	for SNPs	vs Inclusion/exclusion criteria		#SNPs	Analysis
African ancestry	Atherosclerosis Risk in Communities study	ARIC ³	Population- based	Illumina HumanExome Beadchip v1.0	GenomeStudio combined with the CHARGE joint calling ²	≥0%	≥95%	N/A	≥89.9%	Plink sex check; relatedness PI_HAT>0.4; genetic cluster check	233,238	seqMeta v1.6.0
	Cardiovascular Health Study	CHS ⁶	Population- based	Illumina HumanExome Beadchip v1.0	GenomeStudio combined with the CHARGE joint calling ²	≥0%	≥95%		≥97%	N/A	227,006	seqMeta v1.6.0
	Jackson Heart Study	JHS ²⁴	Mixed family and population- based	Illumina HumanExome Beadchip v1.0	GenomeStudio combined with the CHARGE joint calling ²	≥0%	≥95%	>10 ⁻⁶	≥95%	Duplicate samples; sex mismatch; inbreeding coefficient F>0.2 or <0.2	234,937	R (3.1.0), seqMeta (1.6.0)
	MESA	MESA ¹⁶	Population- based	Illumina HumanExome Beadchip v1.0	GeneCall + Zcall	≥0%	≥95%	>10 ⁻⁶	≥95%	N/A	235,081	seqMeta v1.6.0
	Women's Health Initiative	WHI ²²	Population- based	Illumina HumanExome Beadchip v1.0	GeneCall + Zcall	NA	>95%	NA	NA	First degree relatives	246303	seqMeta

Supplementary Table 2. Association of top variants with PR interval by random-effect meta-analysis

		SNP call	P-value	P-value
SNP	Closest gene	rate in	(Random	(Heterogeneity
		FHS	effect)	test)
rs6795970	SCN10A	1.000	1.11E-37	<0.0001
rs3922844	SCN5A	1.000	7.10E-20	<0.0001
rs3807989	CAV1	1.000	5.16E-24	<0.0001
rs7660702	ARHGAP24	1.000	3.18E-18	<0.0001
rs17287293	LINC00477	1.000	6.65E-12	<0.0001
rs11897119	MEIS1	0.997	1.61E-13	2.23E-02
rs1896312	ТВХЗ	1.000	2.33E-17	1.46E-01
rs883079	TBX5	1.000	7.63E-09	2.20E-03
rs116202356	DLEC1	1.000	2.01E-16	2.36E-01
rs251253	CREBRF	1.000	1.56E-08	5.30E-03
rs11153730	SLC35F1	1.000	1.86E-13	2.10E-01
rs35658696	PAM	1.000	3.50E-09	1.15E-01
rs2070492	SLC22A14	1.000	7.24E-07	1.53E-02
rs2585897	XPO4	1.000	6.44E-13	4.40E-01
rs2042995	TTN	1.000	4.34E-11	6.98E-01
rs4399693	ID2	1.000	2.43E-07	1.39E-01
rs41306688	ADPRHL1	1.000	7.36E-09	5.64E-01
rs4745	EFNA1	1.000	1.15E-04	6.09E-02
rs11078078	LINC00670	1.000	3.59E-06	1.07E-01
rs60632610	SYNPO2L	1.000	4.53E-08	9.34E-01
rs11848785	SIPA1L1	0.999	4.58E-08	6.44E-01
rs3733414	FAT1	1.000	4.81E-08	6.63E-01
rs17362588	CCDC141	1.000	2.01E-05	1.62E-01
rs2296172	MACF1	1.000	1.14E-07	8.26E-01
rs9398652	GJA1	1.000	1.29E-07	7.26E-01
rs442177	AFF1	1.000	1.82E-07	7.20E-01
rs7002002	PLEC	1.000	2.06E-07	5.47E-01
rs1768208	МОВР	1.000	3.57E-07	7.03E-01
rs2119788	HAND2	0.999	5.76E-05	1.82E-01
rs17391905	C1orf185	1.000	9.61E-07	6.62E-01
rs524295	ALDH18A1	1.000	9.75E-07	7.76E-01

Supplementary Table 3. Biological significance of PR-related genes

Locus number	Gene	Prior GWAS associations	Other disease associations	Biological function	Relation to the heart
1	SCN10A	PR interval, ^{25,26} QRS duration ^{26,27}	Brugada syndrome, ²⁸ episodic pain syndrome, ²⁹ Pit Hopkins syndrome ³⁰	Sodium voltage-gated channel alpha subunit 10; mediates upstroke of action potential in neurons. ³¹	Present in cardiac ganglia ³¹
2	SCN5A	PR interval ^{32,33}	LQT3, ³⁴ BrS, ³⁴ sinus node dysfunction, ³⁴ AF, ³⁵ DCM, ³⁶ familial heart block ³⁷	Responsible for peak inward Na current that underlies upstroke of the cardiac action potential. ³⁸	See Biological function
3	CAV1	PR interval, ^{26,39} atrial fibrillation, ⁴⁰ PR segment ⁴¹	Congenital lipodystrophy type 3, ⁴² primary pulmonary hypertension 3, ⁴³ LCCNS ⁴⁴	CAV1 is a main component of caveolae (plasma membrane "rafts"). ⁴⁵ Caveolins are important for cell cycle progression. CAV1 also plays an important role in insulin receptor stabilization. ⁴⁶	See GWAS associations; also has a potential role in vascular remodeling and inflammation ⁴⁷
4	ARHGAP24	PR interval ²⁶	Focal segmental glomerulosclerosis ⁴⁸	Encodes Rho GTPase-activating protein 24. It antagonizes RAC through binding to filamin A, ⁴⁹ and has highest expression in podocyte adhesions in the kidney. ⁴⁸	Prior GWAS association only.
5	LINC00477	Heart rate ^{50,51}		Long intergenic non-protein coding RNA 477. Linc-RNAs are involved in cell-cycle regulation, transcription and metabolism. ⁵²	Prior GWAS association only
6	MEIS1	PR interval ³⁹	Restless legs syndrome ⁵³⁻⁵⁵	Encodes a homeodomain containing transcription factor.	Required for normal cardiac development; regulates cardiomyocyte cell cycle ⁵⁶ .
7	TBX3	PR interval ³⁹	Ulnar mammary syndrome ⁵⁷	Encodes a T-box containing transcription factor. It specifies sino-atrial node development, and represses the atrial gene program in the region of the AV node. ⁵⁸	VSD and WPW reported in a family with TBX3 mutation ⁵⁷ .
8	TBX5	QRS duration ⁵⁹	Holt-Oram syndrome, ⁶⁰ atrial fibrillation, ⁶¹ tetralogy of Fallot ⁶²	Encodes a T-box containing transcription factor. It interacts with NKX2.5 and GATA4 to regulate cardiomyocyte differentiation. ^{63,64} It is required for development of the cardiac conduction system. ⁶⁵	See Other disease associations and Biological function
9	DLEC1		Lung, esophageal and renal carcinoma ⁶⁶	Postulated to be a tumor suppressor. ⁶⁶	
10	CREBRF	PR interval ³⁹		Encodes a leucine zipper protein that promotes degradation of <i>CREB3</i> , and is involved in the unfolded protein response. ⁶⁷	Highest expression in the heart and kidney ⁶⁷ .

Locus	Gene	Prior GWAS	Other disease associations	Biological function	Relation to the heart
number		associations			
11	PLN/SLC35 F1	QT interval, ^{68,69} heart rate ⁵⁰	Possibly neurodevelopmental disorders ⁷⁰	<i>PLN</i> encodes phospholamban, which interacts with the cAMP-dependent protein kinase in the heart. The SNP is in strong linkage disequilibrium (R^2 =0.87) with SNP rs11153768, which was previously reported to be associated with left ventricle internal diastolic dimension. ⁷¹	Prior GWAS association only
12	PAM	Type 2 diabetes ^{72,73}	<i>Pam</i> null mice do not survive gestation. ⁷⁴	Encodes a protein that catalyzes the conversion of neuroendocrine peptides into alpha-amidated products ⁷⁵	High levels of mRNA in rat heart atria; ⁷⁶ expression in H9c2 rat cardiac myoblasts displaying developmental regulation ⁷⁷
13	SLC22A14			May play a role in organic cation transport in various tissues ⁷⁸	
14	XPO4		Associated with non-alcoholic steatohepatitis; ⁷⁹ also behaves as a tumor suppressor ⁸⁰	Encodes a member of the exportin family, which mediates nuclear export of protein cargoes ⁸¹	<i>XPO4</i> variant carriers may have smaller infarcts, due to better glucose uptake by the heart. ⁸²
15	TTN	QT interval ⁶⁸	Implicated in a number of cardio- and skeletal-myopathies, including: DCM, ⁸³ HFpEF, ⁸⁴ arrhythmogenic right ventricular dysplasia, ⁸⁵ late-onset TMD, ⁸⁶ limb-girdle muscular dystrophy type 2, ⁸⁷ hereditary myopathy with early respiratory failure, ⁸⁸ centronuclear myopathy ⁸⁹	Plays a major role within the sarcomere in striated muscle, providing structural support during contraction, and regulating passive tension during stretching; also involved in cellular processes such as biomechanical sensing and signaling ⁹⁰	Plays a role in cardiac development, health, and disease (see GWAS and disease associations); ⁹⁰ major contributor to myocyte passive stiffness ⁸⁴
16	ID2		Upregulated and/or overexpressed in the development and progression of tumors in prostate, ⁹¹ epidermis, ⁹² colon, ⁹³ and pancreas, ⁹⁴ as well as neuroblastoma. ⁹⁵	Regulates cell growth through inhibition of cell differentiation and stimulation of cell proliferation; ^{96,97} also negatively regulates basic helix-loop-helix gene products ⁹⁶	Expressed in the outflow tract, endocardial cushions, and valves of the developing murine heart ^{98,99}
17	ADPRHL1			Reverses ADP-ribosylation, a posttranslational modification that regulates protein function ¹⁰⁰	mRNA expression induced in hESC differentiation to cardiomyocytes; ¹⁰¹ acts during cardiogenesis in xenopus embryos to modify heart chamber outgrowth and myofibril directionality ¹⁰²

Locus	Gene	Prior GWAS	Other disease associations	Biological function	Relation to the heart
number		associations			
18	EFNA1	Association with prostate cancer susceptibility was implicated by SNPs, but the association was ultimately mapped to <i>KCNN3</i> ; ¹⁰³ obesity related traits ¹⁰⁴ (but not at genome wide significance); plasma levels of liver enzymes ¹⁰⁵		Ligand that binds to the EPH group of receptor tyrosine kinases	
19	LINCOO670	Response to amphetamines (relatively close SNP) ¹⁰⁶		Encodes a long intergenic non-protein coding RNA 670	Associated with torsades de pointes ¹⁰⁷
20	SYNPO2L	Susceptibility locus for atrial fibrillation; ⁴⁰ whole exome sequencing for AF ¹⁰⁸	Susceptibility to AF	Encodes an actin-associated protein that may modulate actin shape	Atrial fibrillation ^{40,108}
21	SIPA1L1	FEV1/FVC in COPD; ¹⁰⁹ mitral valve prolapse ¹¹⁰	COPD; mitral valve prolapse	Stimulates the RAP2A GTPase and promotes reorganization of the actin cytoskeleton; recruits DLG4 to F-actin.	Mitral valve prolapse ¹¹⁰
22	FAT1	Chronotype ¹¹¹ obesity; ¹¹² -Alzheimer disease (intergenic) ¹¹³	Glomerulotubular nephropathy; ¹¹⁴ -multiple types of cancer ¹¹⁵	Plays an essential role for cellular polarization, directed cell migration, and modulating cell- cell contact; member of the cadherin family;. plays a role as a tumor suppressor gene	
23	CCDC141	Heart rate ⁵⁰			
24	MACF1	HDL cholesterol ¹¹⁶ , type 2 diabetes ¹¹⁷	Knockdown of <i>MACF1</i> caused developmental retardation and embryonic death in mice ¹¹⁸ and failure of oocyte polarization in zebrafish. ¹¹⁹	Encodes a member of the spectraplakin family, ¹²⁰ which plays an important role in calcium ion binding and cardiomyocyte microtubule distribution; ¹²¹ also involved in the regulation of the cytoskeletal response to environmental signaling cues ¹²² and directional cell movement ^{123,124}	Expressed in a variety of tissues, including the heart and lungs ¹²⁵

Locus	Gene	Prior GWAS	Other disease associations	Biological function	Relation to the heart
number		associations			
25	GJA1	Resting heart rate; ^{51,126} -heart rate ⁵⁰	Genetic variation in <i>GJA1</i> mayi affect protein kinase phosphorylation and disrupt cell communication. ¹²⁷ Reductions in GJA1 have been implicated in arrhythmia predisposition. ¹²⁸ -Various anomalies were observed in <i>Gja1</i> knockout mice, such as conotruncal heart malformation and outflow obstruction. ¹²⁹ Mutations in <i>GJA1</i> may also cause congenital heart disease and visceroatrial heterotaxia. ¹³⁰	Encodes a gap junction protein known as connexin 43	Highly expressed in ventricular myocardium essential to coronary artery development and is involved in electrical conduction and synchronization of heart contraction ¹³¹
26	AFF1	Triglycerides ¹³²⁻¹³⁴	Gene associated with leukemia ¹³⁵	Encodes a member of the AF4/ lymphoid nuclear family	
27	PLEC	Post bronchodilator FEV1; ¹⁰⁹ cholesterol; ¹³² fibrinogen levels ¹³⁶		Encodes plectin, a giant, multi-domain protein involved in cell structure and shapethat also regulates a variety of signaling complexes	
28	МОВР	Progressive supranuclear palsy ¹³⁷		Encodes myelin-associated oligodendrocyte basic protein, which is important for stabilization of the myelin sheath.	
29	HAND2		Dysfunction can result in pathological hypertrophy and heart failure ¹³⁸ and stenosis of the right ventricle. ¹³⁹ Gene knockdown resulted in extra-embryonic abnormalities. ¹⁴⁰	Encodes a transcription factor that binds to a heart- and neural crest derivatives-expressed proteins	The gene regulates cardiac morphogenesis and ventricular cardiomyocyte expansion during heart development. ¹⁴¹⁻ ¹⁴³ Another gene in the same family, <i>HAND1</i> , was associated with QRS interval duration. ⁵⁹
30	C1orf185	QRS duration; ⁵⁹ FEV1 in COPD ¹⁰⁹		Encodes an RNA expressed in the testis	
31	ALDH18A1	Blood metabolites; ¹⁴⁴ Staphylococcus aureus carriage ¹⁴⁵	Neurodegeneration; ¹⁴⁶ cutis laxa; cataracts; DeBarsy syndrome; spastic paraplegia	Encodes a mitochondrial enzyme that catalyzes a critical step in proline, ornithine, and arginine synthesis	Mutations have been linked to decreased collagens I and III ¹⁴⁷

	-											
CNID	Lanua	Closest	Coding	CAF *	PR-interval			AF		P-w	vave du	
SINP LOCUS	gene	allele		Beta	SE	P value	Beta	SE	P value	Beta	SE	
rs6795970	3p22.2	SCN10A	А	0.37	0.171	0.005	4.0E-240	-0.072	0.016	5.4E-06	1.14	0.089
rs3922844	3p22.2	SCN5A	А	0.34	-0.107	0.005	9.3E-90	0.048	0.017	5.4E-03	-1.058	0.09
rs3807989	7q31.2	CAV1	А	0.43	0.091	0.005	3.0E-74	-0.086	0.016	6.5E-08	0.538	0.084
rs7660702	4a21 23	ΔΡΗGΔΡ24	C	033	-0.092	0.005	1 2F-68	0 004	0.015	8 0F-01	0 09	0 088

Supplementary Table 4. Association of PR-related variants with AF and P-wave indices

SND	Locus	Closest	Coding	C ^ E *	PR-interval Beta SE P value E			AF		Р-м	vave dura	ation	P-wave terminal force			
SINP	Locus	gene	allele	CAF	Beta	SE	P value	Beta	SE	P value	Beta	SE	P value	Beta	SE	P value
rs6795970	3p22.2	SCN10A	А	0.37	0.171	0.005	4.0E-240	-0.072	0.016	5.4E-06	1.14	0.089	7.3E-38	-0.1	12.5	1.0E+00
rs3922844	3p22.2	SCN5A	Α	0.34	-0.107	0.005	9.3E-90	0.048	0.017	5.4E-03	-1.058	0.09	3.1E-32	21.2	12.8	9.8E-02
rs3807989	7q31.2	CAV1	А	0.43	0.091	0.005	3.0E-74	-0.086	0.016	6.5E-08	0.538	0.084	1.5E-10	18.5	12	1.2E-01
rs7660702	4q21.23	ARHGAP24	С	0.33	-0.092	0.005	1.2E-68	0.004	0.015	8.0E-01	0.09	0.088	3.0E-01	22.3	12.8	8.3E-02
rs17287293	12p12.1	LINC00477	G	0.14	-0.108	0.007	1.9E-52	-0.105	0.022	2.1E-06	-0.505	0.12	2.7E-05	17.8	16.9	2.9E-01
rs11897119	2p14	MEIS1	С	0.39	0.057	0.006	4.2E-25	0.016	0.017	3.6E-01	0.126	0.087	1.5E-01	-7.5	12.4	5.5E-01
rs1896312	12q24.21	ТВХЗ	G	0.28	0.056	0.006	8.7E-25	-0.037	0.014	7.2E-03	0.002	0.093	9.8E-01	-6	13.2	6.5E-01
rs883079	12q24.21	TBX5	G	0.29	0.055	0.005	4.5E-24	-0.085	0.018	1.7E-06	0.612	0.094	8.3E-11	-39.4	13.5	3.6E-03
rs116202356	3p22.2	DLEC1	А	0.02	-0.195	0.02	1.0E-22	0.079	0.055	1.5E-01	-1.72	0.434	7.3E-05	61.6	60.9	3.1E-01
rs251253	5q35.1	CREBRF	G	0.42	-0.044	0.005	4.7E-18	-0.034	0.017	3.8E-02	-0.075	0.088	3.9E-01	-15.5	12.6	2.2E-01
rs11153730	6q22.31	SLC35F1	С	0.47	-0.042	0.005	9.5E-18	-0.059	0.014	1.9E-05	0.276	0.083	9.4E-04	8.2	11.9	4.9E-01
rs35658696	5q21.1	PAM	G	0.04	0.096	0.012	8.5E-16	0.074	0.037	4.9E-02	-0.046	0.272	8.7E-01	-71.5	38	6.0E-02
rs2070492	3p22.2	SLC22A14	Т	0.1	0.062	0.008	4.0E-14	-0.023	0.026	3.7E-01	0.864	0.158	4.8E-08	28.3	22.8	2.2E-01
rs2585897	13q12.11	XPO4	А	0.17	0.047	0.006	2.8E-13	-0.003	0.021	8.8E-01	-0.207	0.115	7.1E-02	18.6	16.5	2.6E-01
rs2042995	2q31.2	TTN	С	0.26	0.038	0.006	4.3E-11	0.059	0.018	1.0E-03	0.308	0.097	1.5E-03	42.9	13.9	2.1E-03
rs4399693	2p25.1	ID2	Α	0.34	0.037	0.006	9.1E-11	0.004	0.017	8.4E-01	0.095	0.107	3.8E-01	-0.6	14.7	9.7E-01
rs41306688	13q34	ADPRHL1	С	0.03	0.1	0.017	7.4E-09	0.057	0.044	2.0E-01	-0.401	0.477	4.0E-01	30.1	67.2	6.5E-01
rs4745	1q22	EFNA1	Т	0.49	0.03	0.005	1.2E-08	0.023	0.014	1.0E-01	0.042	0.094	6.6E-01	-5	12.8	7.0E-01
rs11078078	17p12	LINC00670	А	0.4	0.028	0.005	2.2E-08	-0.022	0.016	1.7E-01	-0.045	0.088	6.1E-01	4.5	12.6	7.2E-01
rs60632610	10q22.2	SYNPO2L	Т	0.15	-0.037	0.007	4.5E-08	-0.11	0.017	1.5E-10	0.324	0.137	1.8E-02	40.4	19.4	3.7E-02
rs11848785	14q24.2	SIPA1L1	G	0.24	0.032	0.006	4.6E-08	0.032	0.018	7.7E-02	-0.018	0.099	8.5E-01	10.4	13.9	4.5E-01
rs3733414	4q35.2	FAT1	Α	0.38	0.028	0.005	4.8E-08	-0.011	0.016	4.9E-01	-0.098	0.087	2.6E-01	-11.2	12.6	3.7E-01
rs17362588	2q31.2	CCDC141	А	0.08	-0.049	0.009	5.5E-08	0.001	0.027	9.8E-01	-0.035	0.153	8.2E-01	-19.4	21.4	3.7E-01
rs2296172	1p34.3	MACF1	G	0.2	0.033	0.006	1.1E-07	0.025	0.019	1.8E-01	-0.055	0.107	6.1E-01	20.4	15	1.7E-01
rs9398652	6q22.31	GJA1	А	0.14	0.039	0.007	1.3E-07	-0.064	0.017	1.1E-04	-0.033	0.121	7.8E-01	-24.8	17.9	1.7E-01
rs442177	4q22.1	AFF1	С	0.42	-0.026	0.005	1.8E-07	-0.01	0.013	4.4E-01	0.072	0.084	3.9E-01	21.5	12.2	7.7E-02
rs7002002	8q24.3	PLEC	А	0.38	-0.027	0.005	2.1E-07	-0.016	0.014	2.7E-01	0.07	0.103	5.0E-01	11.4	14.5	4.3E-01
rs1768208	3p22.1	MOBP	Т	0.25	0.029	0.006	3.6E-07	-0.017	0.014	2.0E-01	0.153	0.102	1.3E-01	-5.4	14.3	7.0E-01
rs2119788	4q34.1	HAND2	С	0.52	-0.025	0.005	5.6E-07	0.024	0.015	1.1E-01	-0.145	0.091	1.1E-01	10.8	13.1	4.1E-01
rs17391905 ⁺	1p32.3	C1orf185	G	0.03	-0.069	0.014	9.6E-07	0.123	0.049	1.2E-02	-0.357	0.248	1.5E-01	26.1	37	4.8E-01
rs524295	10q24.1	ALDH18A1	А	0.4	-0.026	0.005	9.7E-07	-0.022	0.017	1.9E-01	-0.127	0.089	1.5E-01	-6.3	12.5	6.2E-01

SNP	Locus	Closest gene	Function	Coding allele	CAF*	Beta	SE	P value
rs6795970	3p22.2	SCN10A	Missense	А	0.40	0.1699	0.0053	2.1×10^{-228}
rs3807989	7q31.2	CAV1	Intronic	А	0.41	0.0940	0.0053	3.4x10 ⁻⁷¹
rs7660702	4q21.23	ARHGAP24	Intronic	С	0.30	-0.0984	0.0056	3.4x10 ⁻⁶⁸
rs3922844	3p22.2	SCN5A	Intronic	А	0.31	-0.0987	0.0057	4.8×10^{-67}
rs17287293	12p12.1	LINC00477	Intergenic	G	0.15	-0.1110	0.0073	8.0x10 ⁻⁵³
rs1896312	12q24.21	ТВХЗ	Intergenic	G	0.29	0.0590	0.0058	2.5×10^{-24}
rs11897119	2p14	MEIS1	Intronic	С	0.39	0.0559	0.0058	5.1x10 ⁻²²
rs251253	5q35.1	CREBRF	Intergenic	G	0.39	-0.0473	0.0054	1.3x10 ⁻¹⁸
rs883079	12q24.21	TBX5	UTR3	G	0.28	0.0503	0.0058	4.8x10 ⁻¹⁸
rs11153730	6q22.31	SLC35F1	Intergenic	С	0.49	-0.0422	0.0051	2.2x10 ⁻¹⁶
rs35658696	5q21.1	PAM	Missense	G	0.05	0.0936	0.0120	7.7x10 ⁻¹⁵
rs4399693	2p25.1	ID2	Intergenic	А	0.31	0.0453	0.0061	1.6x10 ⁻¹³
rs2585897	13q12.11	XPO4	Intronic	А	0.17	0.0475	0.0068	4.0×10^{-12}
rs41306688	13q34	ADPRHL1	Missense	С	0.04	0.1040	0.0176	3.3x10 ⁻⁹
rs2042995	2q31.2	TTN	Missense	С	0.23	0.0363	0.0062	4.0x10 ⁻⁹
rs4745	1q22	EFNA1	Missense	т	0.53	0.0306	0.0055	1.9x10 ⁻⁸
rs3812629	10q22.2	SYNPO2L	Missense	А	0.15	-0.0404	0.0073	2.6x10 ⁻⁸
rs3733415	4q35.2	FAT1	Missense	А	0.13	0.0465	0.0084	3.2x10 ⁻⁸
rs9398652	6q22.31	GJA1	Intergenic	А	0.10	0.0471	0.0085	3.5x10 ⁻⁸
rs2119788	4q34.1	HAND2	Intergenic	С	0.54	-0.0281	0.0052	6.0x10 ⁻⁸
rs442177	4q22.1	AFF1	Intronic	С	0.41	-0.0289	0.0053	6.3x10 ⁻⁸
rs80238762	3p22.2	TTC21A	Missense	А	0.01	0.1186	0.0221	8.6x10 ⁻⁸
rs524295	10q24.1	ALDH18A1	Intergenic	А	0.35	-0.0293	0.0055	1.1x10 ⁻⁷
rs2296172	1p34.3	MACF1	Missense	G	0.22	0.0327	0.0062	1.6x10 ⁻⁷
rs11848785	14q24.2	SIPA1L1	Intronic	G	0.25	0.0309	0.0059	1.9x10 ⁻⁷
rs17362588	2q31.2	CCDC141	Missense	А	0.09	-0.0476	0.0092	1.9x10 ⁻⁷
rs11078078	17p12	FLJ34690	Intronic	А	0.37	0.0275	0.0053	2.4×10^{-7}
rs1768208	3p22.1	МОВР	Intronic	т	0.28	0.0288	0.0058	5.5x10 ⁻⁷
rs33985936	3p22.2	SCN11A	Missense	т	0.25	-0.0297	0.0060	6.8x10 ⁻⁷
rs7002002	8q24.3	PLEC	Missense	А	0.41	-0.0264	0.0053	7.1x10 ⁻⁷

Supplementary Table 5. Significant common variants associated with PR interval for European ancestry

*Coding allele frequency

Supplementary Table 6. Significant common variants associated with PR interval for African ancestry

SNP	Locus	Closest gene	Function	Coding allele	CAF*	Beta	SE	P value
rs3922844	3p22.2	SCN5A	Intron	А	0.58	-0.1620	0.0148	5.5x10 ⁻²⁸
rs6795970	3p22.2	SCN10A	Missense	А	0.10	0.1834	0.0249	1.8x10 ⁻¹³
rs883079	12q24.21	TBX5	3'UTR	G	0.34	0.0878	0.0154	1.1x10 ⁻⁸

*Coding allele frequency

All three top SNPs were also significantly associated with PR interval for European ancestry

SNP	AA: ARIC	AA: CHS	AA: JHS	AA: MESA	AA: WHI	EA: AGES	EA: ARIC	EA: BRIGHT	EA: CHS	EA: ERF	EA: FHS	EA: GOCHA	EA: GRAPHIC	EA: INTER99	EA: KORA	EA: KORCULA	EA: Lifelines	EA: LRGP	EA: MESA	EA: CAMP	EA: NEO	EA: RS	EA: SCOTLAND	EA: SHIP	EA: TwinsUK	EA: WHI	EA: YFS
rs6795970	3.60	1.73	5.22	0.04	5.39	6.12	12.02	3.81	6.83	1.67	7.54	0.59	3.56	9.23	6.05	-0.09	4.90	4.65	0.51	5.73	11.37	7.06	9.83	8.80	2.29	14.79	7.47
rs3922844	-7.11	-2.89	-7.76	-0.26	-5.10	-2.33	-5.94	-3.18	-3.49	-2.06	-5.86	-2.19	-1.47	-4.86	-1.15	-3.10	-3.38	-1.70	0.80	NA	-4.90	-3.55	-7.35	-6.08	-2.59	-8.07	-2.84
rs3807989	2.03	2.32	1.09	0.85	3.49	4.69	7.47	1.53	3.60	1.76	5.43	0.19	2.50	4.75	3.03	0.90	1.52	3.50	-0.08	3.04	5.65	3.73	7.05	6.29	-0.17	6.15	3.06
rs7660702	-2.91	-0.08	-1.39	-0.51	-1.83	-3.05	-4.74	0.30	-3.67	-2.33	-4.76	0.63	-3.61	-5.91	-4.59	0.31	-3.56	-1.63	0.51	-3.05	-5.08	-3.66	-5.23	-6.79	-1.70	-8.79	-1.74
rs17287293	-0.24	-4.33	-0.01	0.71	-0.55	-3.04	-5.91	-2.06	-3.36	-2.50	-4.33	-1.06	-1.14	-3.50	-3.79	0.51	-0.63	-4.78	1.19	-1.81	-3.69	-0.90	-5.11	-4.34	-1.67	-8.56	-4.71
rs11897119	2.85	-0.20	2.95	0.93	NA	1.53	3.22	0.98	2.47	1.96	2.71	0.97	2.31	3.93	4.01	-1.17	2.64	0.82	-1.34	1.69	3.22	2.93	4.88	1.98	0.03	NA	0.03
rs1896312	2.08	1.36	1.08	0.36	-0.62	1.74	4.20	1.68	1.38	1.31	3.44	-0.33	2.27	3.22	2.49	0.29	1.11	3.00	-0.34	NA	2.24	3.22	2.72	3.36	2.18	3.93	2.18
rs883079	3.32	3.06	3.09	0.40	3.00	1.31	3.38	-0.26	2.52	0.47	1.85	1.60	1.46	2.74	0.51	-0.20	0.85	0.89	-1.38	NA	1.02	0.23	3.58	2.17	0.09	7.45	0.25
rs116202356	-0.60	-0.10	-1.49	-2.10	-0.69	-1.38	-4.02	1.21	-1.78	-1.23	-2.08	-2.02	-2.06	-3.15	-2.10	-0.66	-1.27	-1.76	0.74	-3.20	-3.15	-3.02	-1.71	-2.23	0.12	-5.00	-0.63
rs251253	0.62	-1.63	-1.92	0.28	-0.49	-0.68	-4.06	-0.97	-2.27	-0.86	-4.32	0.85	-1.60	-4.88	-1.93	-0.45	-3.17	-1.02	0.29	NA	-2.59	-1.73	-2.88	-2.06	-1.07	-2.22	-1.30
rs11153730	-1.83	-1.90	-1.31	-0.43	-0.24	-3.14	-2.00	-1.92	-0.82	-1.44	-0.74	0.36	-2.48	-2.08	-2.01	1.08	-1.41	0.77	0.18	-3.66	-3.94	-1.46	-1.60	-2.15	-1.41	-3.92	-1.17
rs35658696	1.69	-0.69	1.04	1.14	1.52	0.51	2.68	0.64	2.21	3.24	1.21	1.41	-0.32	2.68	0.87	-2.29	0.00	-0.56	-0.29	0.22	1.98	1.01	3.62	2.35	2.29	4.11	2.36
rs2070492	2.08	-0.23	0.44	-0.95	0.46	0.44	1.22	-0.20	2.71	-1.38	1.07	0.79	1.53	2.05	2.36	1.95	3.09	2.27	-1.35	0.36	3.02	2.03	2.54	1.64	2.70	4.50	-0.51
rs2585897	2.48	2.13	1.34	-0.44	-0.48	0.20	4.59	1.38	1.55	0.41	0.89	1.58	-0.33	2.54	1.02	0.80	1.12	1.74	0.65	1.92	1.22	0.89	1.74	1.03	2.23	1.92	2.50
rs2042995	1.57	1.47	3.04	-0.93	1.52	1.58	3.39	-0.28	2.13	0.95	1.00	0.01	1.31	1.83	0.89	0.28	2.27	1.18	0.06	-0.72	1.35	0.26	2.04	1.83	-0.53	1.82	1.32
rs4399693	-0.78	0.68	-2.08	0.14	NA	1.10	4.18	-0.24	1.64	0.61	1.76	1.10	1.78	2.47	1.79	1.05	1.52	1.59	-0.70	1.94	2.48	0.71	2.97	1.91	0.35	NA	0.23
rs41306688	0.79	NA	-0.21	-0.75	-0.66	2.93	3.79	1.53	NA	0.52	0.39	0.13	0.62	NA	1.47	1.08	1.48	0.69	-1.16	1.50	NA	2.10	1.93	1.31	2.04	NA	1.14
rs4745	0.06	1.25	0.71	0.40	0.38	1.49	3.32	-0.14	0.69	-0.62	1.82	-0.74	2.95	1.47	0.93	-0.06	2.49	-0.24	0.20	0.38	NA	-1.86	1.64	2.37	2.75	3.33	0.49
rs11078078	0.12	-0.15	1.44	0.68	2.84	2.92	0.97	1.53	0.76	1.59	1.53	-0.03	0.02	1.49	1.80	0.43	-0.65	-1.22	-0.37	0.90	1.90	0.87	1.52	2.55	3.20	1.86	1.82

Supplementary Table 7. Association with each top variant in individual studies. Z-scores were listed. AA: African ancestry; EA: European ancestry.

rs60632610	-0.53	-1.70	-0.46	-0.91	0.46	-0.43	-1.28	-0.09	-0.85	-0.93	-0.23	0.91	-1.57	-0.81	0.15	0.59	-0.94	-1.72	-1.05	-1.92	-1.65	-2.52	-1.44	-1.14	-0.15	-3.39	-1.09
rs11848785	1.67	-0.25	1.14	0.20	0.68	0.33	3.52	-0.29	-0.40	0.01	1.39	-1.13	1.94	2.11	1.22	0.28	0.50	2.15	0.91	0.21	1.57	2.54	1.25	-0.19	-0.13	2.08	1.31
rs3733414	0.71	-0.22	0.51	-0.35	3.69	1.05	0.66	0.83	1.06	1.83	1.45	1.45	1.46	1.87	-0.72	1.24	0.09	1.03	0.62	0.99	1.32	0.87	1.97	1.82	0.94	2.15	1.21
rs17362588	-1.78	0.82	-1.84	0.34	-0.88	-2.71	-0.73	1.02	-0.34	-2.80	-1.35	0.74	-1.19	-1.60	-0.59	1.48	0.32	-0.64	-0.96	-0.55	-1.28	0.90	-1.73	-2.18	-0.48	-3.40	-2.23
rs2296172	1.44	1.45	-0.07	-0.08	-0.74	0.74	1.38	1.50	0.92	2.11	-0.93	0.14	-0.58	2.54	0.79	0.82	0.20	1.89	1.39	2.34	0.85	1.35	2.19	1.88	-0.49	0.85	0.92
rs9398652	1.62	0.48	-0.60	0.43	0.09	0.94	1.74	-0.23	1.66	-0.08	0.75	1.21	0.58	1.93	2.17	0.87	-0.01	0.90	1.48	NA	2.11	-0.50	1.51	-0.10	1.90	3.47	0.95
rs442177	0.84	-0.97	-0.56	0.32	-1.20	-0.32	-3.98	-0.77	-0.16	-1.27	-0.41	0.32	-1.33	-2.05	-2.40	0.60	-0.34	0.33	-1.21	NA	-1.24	0.17	-1.32	-0.52	-0.93	-2.73	-0.31
rs7002002	0.20	NA	-0.93	-1.79	-1.23	-0.91	-1.92	-1.66	NA	-1.27	0.43	-1.86	-0.36	-4.32	-1.16	-0.06	0.09	-0.19	-1.42	0.37	-0.93	0.33	-2.07	-0.71	-0.53	-1.68	-0.41
rs1768208	2.08	-1.59	0.97	-0.65	0.15	1.14	1.84	0.53	1.62	0.25	1.04	-0.22	1.26	2.72	1.11	0.67	1.23	-0.94	-0.77	0.28	1.68	1.88	0.32	2.08	-0.18	2.09	1.31
rs2119788	2.29	-1.35	0.44	-1.47	-0.60	-1.12	-1.38	-1.65	-1.68	-0.23	-1.33	1.04	-0.34	-0.56	-0.32	0.65	-2.08	-0.51	-0.45	-0.68	-2.40	-0.05	-3.97	-1.41	0.34	-1.73	-1.77
rs17391905	-1.96	-1.01	0.26	-1.11	0.06	-2.88	-3.15	-0.52	-0.65	1.56	-0.24	-0.49	0.16	-2.37	-0.64	-0.01	-0.09	-0.10	-0.27	-1.82	-0.02	-1.61	-1.57	-0.60	0.48	-1.89	-0.20
rs524295	1.90	-0.23	0.58	-0.58	-0.66	-1.15	-3.36	-0.83	-1.23	-0.63	-0.16	-1.29	-0.15	0.01	-2.50	-0.05	-0.68	-0.79	-0.33	NA	-2.30	-0.22	-1.77	-0.78	-0.78	-1.89	-0.97

Supplementary Table 8. Association with rare variants in *MYH6* with PR interval

Marker name	dbSNP ID	Chr	Position	Coding allele	Non- coding allele	Coding allele frequency	Beta	SE	P-value	Function
exm1090339	rs201199853	14	23851739	С	G	5.75E-05	-0.340	0.326	2.97E-01	Missense
exm1090343	rs201919534	14	23852468	С	Т	7.44E-05	-0.536	0.315	8.90E-02	Missense
exm1090381	rs151324358	14	23854213	Α	G	9.16E-05	0.835	0.243	5.92E-04	Missense
exm1090429	rs34330111	14	23856793	Α	С	2.05E-04	0.294	0.162	7.03E-02	Missense
exm1090430	rs201827489	14	23856794	Α	G	4.31E-05	0.479	0.379	2.07E-01	Missense
exm1090436	rs199936506	14	23856987	Т	С	1.72E-04	0.331	0.209	1.13E-01	Missense
exm1809071	rs201016285	14	23857430	Т	С	1.08E-05	0.642	0.707	3.64E-01	Missense
exm1090461	rs150815925	14	23857530	Т	C	6.77E-04	-0.071	0.095	4.57E-01	Missense
exm1090474	rs145611185	14	23858107	А	G	3.77E-04	0.359	0.121	2.93E-03	Missense
exm1090522	rs145508517	14	23862173	С	Т	8.08E-05	0.174	0.257	4.97E-01	Missense
exm1090530	rs143978652	14	23862646	А	С	1.05E-03	-0.120	0.078	1.22E-01	Missense
exm1090537	rs144907522	14	23862913	Α	С	4.85E-04	0.179	0.106	8.99E-02	Missense
exm1090541	rs199838024	14	23862996	А	G	1.40E-04	0.529	0.205	9.72E-03	Missense
exm1090542	rs141704264	14	23862997	А	С	2.85E-03	0.110	0.044	1.32E-02	Missense
exm1090555	rs201193346	14	23863348	А	G	4.69E-04	0.002	0.116	9.87E-01	Missense
exm1090559	rs143284278	14	23863362	С	Т	3.26E-05	-0.088	0.408	8.30E-01	Missense
exm1090560	rs115845031	14	23863383	т	С	2.11E-03	-0.014	0.051	7.89E-01	Missense
exm1090567	rs202120238	14	23865539	А	G	2.14E-04	0.245	0.178	1.69E-01	Missense
exm1090599	rs142992009	14	23868065	G	Т	2.69E-03	0.357	0.046	1.03E-14	Missense
exm1090600	rs150415679	14	23868075	Т	С	1.02E-04	0.098	0.249	6.94E-01	Missense
exm1090629	rs200359124	14	23870067	т	С	5.94E-05	0.169	0.302	5.76E-01	Missense
exm1090630	rs147606900	14	23870076	Т	С	4.85E-05	0.073	0.333	8.27E-01	Missense
exm1090652	rs138572790	14	23871807	С	G	1.12E-04	0.018	0.277	9.48E-01	Missense
exm1090664	rs140660481	14	23872624	А	С	2.83E-04	-0.229	0.163	1.61E-01	Missense
exm1090665	rs201327273	14	23872631	Т	А	1.49E-04	0.347	0.236	1.41E-01	Missense
exm1090674	NA	14	23873927	А	G	4.40E-05	0.298	0.386	4.41E-01	Missense
exm1090675	rs142027794	14	23873940	Т	С	6.74E-03	-0.078	0.030	9.54E-03	Missense
exm1090676	rs200623022	14	23873951	Т	С	2.16E-05	-0.077	0.500	8.78E-01	Missense
exm1090695	rs141187241	14	23874590	С	Т	3.77E-05	-0.176	0.376	6.40E-01	Splicing site
exm1090701	rs140596256	14	23874889	Т	С	5.34E-04	0.393	0.112	4.46E-04	Missense
exm1090710	rs142850511	14	23876318	Т	С	1.29E-04	0.475	0.242	4.98E-02	Missense
exm1090712	rs150574114	14	23876347	Т	С	1.45E-03	0.156	0.061	1.06E-02	Missense

Supplementary Table 9. Association with rare variants in SCN5A with PR interval

Marker name	dbSNP ID	Chr	Position	Coding allele	Non- coding	Coding allele	Beta	SE	P-value	Function
exm301106	rs7626962	3	38620907	т	G	8.30E-03	-0.11	0.029	1.55E-04	Missense
exm301170	rs41313691	3	38645522	Т	G	3.86E-03	-0.02	0.038	5.98E-01	Missense
exm301004	rs41311117	3	38591853	G	А	3.69E-03	0.132	0.042	1.75E-03	Missense
exm301003	rs45489199	3	38591847	С	G	1.75E-03	-0.204	0.06	6.09E-04	Missense
exm301177	rs41313697	3	38646357	С	A	1.29E-03	-0.173	0.067	1.01E-02	Missense
exm301174	rs144511230	3	38646297	Α	G	1.14E-03	-0.027	0.070	6.97E-01	Missense
exm301095	rs41261344	3	38616876	Т	C	1.11E-03	0.119	0.072	1.01E-01	Missense
exm301214	rs41276525	3	38655290	Α	G	8.84E-04	0.311	0.083	1.63E-04	Missense
exm301213	rs45620037	3	38655278	Α	G	7.87E-04	0.324	0.086	1.64E-04	Missense
exm301155	rs12720452	3	38645249	Т	C	6.95E-04	0.099	0.107	3.55E-01	Missense
exm301154	rs45488304	3	38645241	A	G	6.61E-04	-0.170	0.091	6.20E-02	Missense
exm301081	rs41313031	3	38603947	A	G	6.45E-04	0.237	0.103	2.16E-02	Missense
exm301039	rs199473316	3	38592503	Т	C	5.44E-04	0.151	0.106	1.54E-01	Missense
exm301082	rs199473603	3	38603958	A	G	4.85E-04	0.123	0.114	2.79E-01	Missense
exm301207	rs61746118	3	38651303	Α	С	3.77E-04	-0.021	0.120	8.61E-01	Missense
exm301149	rs41313681	3	38640465	A	G	3.45E-04	-0.081	0.125	5.19E-01	Missense
exm301085	rs41311127	3	38603991	G	A	3.13E-04	0.197	0.138	1.53E-01	Missense
exm301108	rs1805125	3	38620946	Α	G	3.09E-04	-0.163	0.161	3.12E-01	Missense
exm301030	rs45563942	3	38592356	G	А	2.21E-04	-0.06	0.156	7.02E-01	Missense
exm301203	rs199473087	3	38651264	Т	A	2.07E-04	-0.145	0.167	3.84E-01	Missense
exm301090	rs199473600	3	38607989	Т	С	1.51E-04	-0.15	0.189	4.26E-01	Missense
exm2050823	rs192113333	3	38662392	Т	C	1.40E-04	0.017	0.215	9.37E-01	Missense
exm301143	rs199473140	3	38640418	Т	С	1.35E-04	0.279	0.305	3.60E-01	Missense
exm301022	rs150264233	3	38592152	Α	G	1.19E-04	0.401	0.218	6.54E-02	Missense
exm301061	rs199473618	3	38595989	Т	С	1.19E-04	-0.692	0.215	1.27E-03	Missense
exm301152	rs199473577	3	38645235	Α	G	1.17E-04	0.002	0.402	9.96E-01	Missense
exm301107	rs199473192	3	38620916	Α	G	1.13E-04	-0.216	0.454	6.34E-01	Missense
exm301026	rs45465995	3	38592174	Α	G	1.04E-04	0.095	0.250	7.05E-01	Missense
exm301223	rs201232332	3	38662449	Т	С	9.17E-05	0.127	0.243	6.02E-01	Missense
exm301220	rs201002736	3	38655522	Α	G	8.08E-05	0.175	0.267	5.13E-01	Missense
exm301183	rs199473111	3	38647498	Т	С	3.77E-05	-0.205	0.389	5.98E-01	Missense
exm301141	rs199473146	3	38639411	Т	С	2.69E-05	0.631	0.447	1.58E-01	Missense
exm301232	rs202114798	3	38671914	С	Т	2.16E-05	0.552	0.563	3.27E-01	Missense
exm2239463	rs199473061	3	38663937	Т	С	1.18E-05	0.095	0.709	8.94E-01	Missense
exm2050754	rs192379242	3	38616877	A	G	1.08E-05	0.280	0.709	6.92E-01	Missense

Supplementary Table 10. Top gene regions associated with PR interval by the SKAT test that included only damaging variants

Gene	P value	Qmeta	CMAF*	#Variants
GORASP1	1.1E-05	14066507	0.0262	11
NEBL	1.9E-05	10818563	0.0237	22
SCN5A	2.2E-05	10335754	0.0184	22
PLEC	1.9E-04	9000047	0.0283	70
CD36	2.8E-04	7951469	0.0132	22
MTRF1	2.9E-04	7671348	0.0150	8
TTN	7.8E-04	51687919	0.3652	435
PRKDC	1.1E-03	3978379	0.0115	22
SDR42E1	1.1E-03	5721052	0.0125	16
AFP	1.1E-03	7479080	0.0175	10

*CMAF: Cumulative minor allele frequency

The significance level threshold for gene-based tests after Bonferroni correction was $P<0.05/2030=2.5\times10^{-5}$. The three genes that reached this significance cutoff were highlighted by bold.

Supplementary Table 11. Association of PR-related SNPs with gene expression in the heart and vascular tissues from GTEx database¹⁴⁸

PR-related SNP ⁺	eSNP*	r ²	eGene ^{\$}	<i>P</i> -value ^{&}	Tissue
rs11153730	rs56399949	0.84	SSXP10	1.3E-07	Artery Aorta
rs11153730	rs78757409	0.84	SSXP10	3.5E-07	Heart Atrial Appendage
rs1768208	rs1768208	1.00	RPSA	2.1E-07	Heart Atrial Appendage
rs1768208	rs1768234	0.80	RPSA	6.1E-07	Artery Aorta
rs2042995	rs6723399	0.63	FKBP7	9.1E-11	Artery Aorta
rs2296172	rs61779310	0.74	OXCT2P1	1.7E-10	Artery Aorta
rs2296172	rs1775654	0.61	RP11-69E11.4	5.6E-08	Artery Aorta
rs2296172	rs4617393	0.61	RP11-69E11.4	1.8E-07	Heart Left Ventricle
rs2296172	rs61779277	1.00	PABPC4	2.2E-06	Artery Aorta
rs2296172	rs613511	0.62	BMP8A	2.9E-06	Heart Atrial Appendage
rs2296172	rs61779314	0.52	OXCT2	4.4E-06	Artery Aorta
rs2296172	rs17264866	0.59	BMP8A	5.3E-06	Heart Left Ventricle
rs2296172	rs598415	0.62	OXCT2P1	6.4E-06	Heart Atrial Appendage
rs4745	rs370545	0.57	GBAP1	3.0E-28	Artery Aorta
rs4745	rs2066981	0.56	GBAP1	4.1E-20	Heart Left Ventricle
rs4745	rs914615	0.57	GBAP1	3.3E-10	Heart Atrial Appendage
rs4745	rs370545	0.57	GBAP1	1.6E-07	Artery Coronary
rs60632610	rs60632610	1.00	MYOZ1	4.7E-23	Heart Atrial Appendage
rs7002002	rs11777239	0.86	PLEC	1.8E-13	Artery Aorta
rs7002002	rs12543539	0.88	PLEC	5.1E-06	Heart Atrial Appendage
rs883079	rs2891503	0.73	TBX5	3.8E-06	Heart Left Ventricle

⁺ Each variant listed is the top SNP associated with PR-interval at the indicated locus (from Table 2).

* The most significant eSNP at the locus, which is in LD with PR-related SNP ($r^2 \ge 0.5$)

^{\$} The most significant eGene at the locus

 $^{\&}$ For the association between the eSNP and the eGene from GTEx with FDR<0.05

Supplementary Table 12. Most significantly enriched biological pathways

Database	Get set	Original get set size	Effective gene set size	Expected number of genes above 95% cutoff	Observed number of genes above 95% cutoff	Nominal <i>P-</i> value	FDR
GO Process	Heart morphogenesis	124	69	3	13	3.6E-05	0.049
GO Process	Regulation of microtubule cytoskeleton organization	52	32	2	7	1.0E-03	0.082
GO Process	Vesicle coating	25	13	1	4	2.9E-03	0.085
REACTOME	Phospholipase C mediated cascade	23	11	1	4	1.6E-03	0.089
GO Process	Actomyosin structure organization	32	20	1	5	2.0E-03	0.092
GO Process	Regulation of heart contraction	83	54	3	9	1.1E-03	0.094
GO Process	Myofibril assembly	26	17	1	5	1.4E-03	0.095
GO Process	Ventricular septum development	23	12	1	4	2.5E-03	0.096

Supplementary Table 13. Percentile of expression compared to all other genes in the same tissue in the GTEx database¹⁴⁸.

Gene	Heart - Atrial	Heart - Left
	Appendage	Ventricle
ADPRHL1	99%	99%
AFF1	93%	92%
ALDH18A1	89%	89%
ARHGAP24	84%	85%
C1orf185	23%	26%
CAV1	99%	99%
CCDC141	84%	86%
CREBRF	83%	85%
DLEC1	60%	58%
EFNA1	95%	93%
FAT1	88%	89%
GJA1	98%	97%
HAND2	96%	95%
ID2	99%	99%
LINC00477	21%	23%
LINC00670	56%	52%
MACF1	93%	92%
MEIS1	83%	83%
МОВР	33%	36%
PAM	100%	99%
PLEC	96%	95%
SCN10A	38%	42%
SCN5A	96%	97%
SIPA1L1	75%	77%
SLC22A14	43%	50%
SLC35F1	73%	75%
SYNPO2L	99%	99%
ТВХЗ	85%	86%
TBX5	98%	99%
TTN	98%	98%
XPO4	80%	79%

Supplementary Figure 1. Overlap between PR loci with loci associated with AF or P-wave Indices (PWI). "PR loci" represents the top loci from the current study. "AF loci" are the top loci that were recently reported from a large-scale GWAS study of AF(*Nat Genet, in press*). "PWI loci" are the top loci that were recently reported from a large-scale GWAS study of PWI (manuscript under review).

Supplementary Figure 2. Manhattan plot for samples of European ancestry. The x-axis represents the chromosomal position for each SNP, and the y-axis represents the $-\log_{10}(P$ -value) of the association with PR interval. The dashed line represents the genome-wide significance cutoff of 5×10^{-8} , and the blue line represents the Bonferroni *P*-value cutoff of 1.3×10^{-6} .

Supplementary Figure 3. Manhattan plot for samples of African ancestry. The x-axis represents the chromosomal position for each SNP, and the y-axis represents the $-\log_{10}(P-value)$ of the association with PR interval. The dashed line represents the genome-wide significance cutoff of 5×10^{-8} , and blue line represents the Bonferroni *P*-value cutoff of 1.3×10^{-6} .

Supplementary Figure 4. Enrichment of PR-related variants in regulatory regions. For comparison, 1000 random variant sets were generated, each with MAF values and LD structures similar to those seen for PR-related variants. Red diamonds indicate scores for enrichment of PR variants in the selected regions, significant after Bonferroni correction ($P_{adj} < 0.05$). Black diamonds indicate non-significant enrichment scores. The PR-related variants were enriched in evolutionarily conserved regions and cardiac-specific regulatory regions, but not in general regulatory regions.

Conserved_primate: phastCons 46-way primate conserved elements;

Conserved_mammal: phastCons 46-way mammalian conserved elements;

Encode_Dnase_all: ENCODE DNaseHS master sites (125 cell types);

Encode_Dnase_heart: ENCODE DNaseHS cardiac sites (cardiac fibroblasts, atrial fibroblasts, cardiac myocytes) **Roadmap_H3K27ac_all**: Any Roadmap Epigenome H3K27ac gapped peak (98 cell types);

Roadmap_H3K27ac_heart: Any Roadmap Epigenome H3K27ac gapped peak (aorta, right atrium, left ventricle, right ventricle)

Cohort Specific Acknowledgments

The **Atherosclerosis Risk in Communities (ARIC) study** is carried out as a collaborative study supported by the National Heart, Lung, and Blood Institute (NHLBI) contracts (HHSN268201100005C, HHSN268201100006C, HHSN268201100007C, HHSN268201100008C, HHSN268201100009C, HHSN268201100010C, HHSN268201100011C, and HHSN268201100012C). The authors thank the staff and participants of the ARIC study for their important contributions. Funding support for "Building on GWAS for NHLBI-diseases: the U.S. CHARGE consortium" was provided by the NIH through the American Recovery and Reinvestment Act of 2009 (ARRA) (5RC2HL102419).

The **Cardiovascular Health Study (CHS)** was supported by NHLBI contracts HHSN268201200036C, HHSN268200800007C, N01HC55222, N01HC85079, N01HC85080, N01HC85081, N01HC85082, N01HC85083, N01HC85086; and NHLBI grants U01HL080295, R01HL068986, R01HL087652, R01HL105756, R01HL103612, R01HL120393, and R01HL130114 with additional contribution from the National Institute of Neurological Disorders and Stroke (NINDS). Additional support was provided through R01AG023629 from the National Institute on Aging (NIA). A full list of principal CHS investigators and institutions can be found at <u>CHS-NHLBI.org</u>. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

The **BRIGHT study** is extremely grateful to all the patients who participated in the study and the BRIGHT nursing team. This work was supported by the Medical Research Council of Great Britain (Grant Number G9521010D); and by the British Heart Foundation (Grant Number PG/02/128). A.F.D. was supported by the British Heart Foundation (Grant Numbers RG/07/005/23633, SP/08/005/25115); and by the European Union Ingenious HyperCare Consortium: Integrated Genomics, Clinical Research, and Care in Hypertension (grant number LSHM-C7-2006-037093). The Exome Chip genotyping was funded by Wellcome Trust Strategic Awards (083948 and 085475). We would also like to thank the Barts Genome Centre staff for their assistance with this project. Drs. Munroe Warren wishes to acknowledge the NIHR Cardiovascular Biomedical Research Unit at Barts and The London, Queen Mary University of London, UK for support.

The Framingham Heart Study is supported by HHSN268201500001I and N01-HC 25195.

The **KORA** platform is funded by the German Ministry for Education and Research (BMBF) and by the State of Bavaria.

The LifeLines Cohort Study, and generation and management of GWAS genotype data for the LifeLines Cohort Study is supported by the Netherlands Organization of Scientific Research NWO (grant 175.010.2007.006), the Economic Structure Enhancing Fund (FES) of the Dutch government, the Ministry of Economic Affairs, the Ministry of Education, Culture and Science, the Ministry for Health, Welfare and Sports, the Northern Netherlands Collaboration of Provinces (SNN), the Province of Groningen, University Medical Center Groningen, the University of Groningen, Dutch Kidney Foundation and Dutch Diabetes Research Foundation.

The **Multi-Ethnic Study of Atherosclerosis (MESA)** is supported by contracts HHSN2682015000031, N01-HC-95159, N01-HC-95160, N01-HC-95161, N01-HC-95162, N01-HC-95163, N01-HC-95164, N01-HC-95165, N01-HC-95166, N01-HC-95167, N01-HC-95168, N01-HC-95169 and by grants UL1-TR-000040, UL1-TR-001079, UL1-TR-001420, and UL1-RR-025005 from NCRR. Funding for MESA SHARe genotyping was provided by NHLBI Contract N02-HL-6-4278. The provision of genotyping data was supported in part by the National Center for Advancing Translational Sciences, CTSI grant UL1TR001881, and the National Institute of Diabetes and Digestive and Kidney Disease Diabetes Research Center (DRC) grant DK063491 to the Southern California Diabetes Endocrinology Research Center.

The **TwinsUK study** was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR) BioResource Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust and King's College London. This work was funded by a grant from the British Heart Foundation (PG/12/38/29615). The Novo Nordisk Foundation Center for Basic Metabolic Research is an independent Research Center at the

University of Copenhagen partially funded by an unrestricted donation from the Novo Nordisk Foundation

(www.metabol.ku.dk).

References

- 1. Harris TB,Launer LJ,Eiriksdottir G,Kjartansson O,Jonsson PV,Sigurdsson G, et al. Age, gene/environment susceptibility-reykjavik study: Multidisciplinary applied phenomics. *Am J Epidemiol*. 2007;165:1076-1087.
- 2. Grove ML,Yu B,Cochran BJ,Haritunians T,Bis JC,Taylor KD, et al. Best practices and joint calling of the humanexome beadchip: The charge consortium. *PLoS ONE*. 2013;8:e68095.
- 3. The atherosclerosis risk in communities (aric) study: Design and objectives. The aric investigators. *Am J Epidemiol*. 1989;129:687-702.
- 4. Caulfield M,Munroe P,Pembroke J,Samani N,Dominiczak A,Brown M, et al. Genome-wide mapping of human loci for essential hypertension. *Lancet*. 2003;361:2118-2123.
- 5. Walford GA,Colomo N,Todd JN,Billings LK,Fernandez M,Chamarthi B, et al. The study to understand the genetics of the acute response to metformin and glipizide in humans (sugar-mgh): Design of a pharmacogenetic resource for type 2 diabetes. *PLoS ONE*. 2015;10:e0121553.
- 6. Fried LP,Borhani NO,Enright P,Furberg CD,Gardin JM,Kronmal RA, et al. The cardiovascular health study: Design and rationale. *Annals of epidemiology*. 1991;1:263-276.
- 7. Pardo LM, MacKay I, Oostra B, van Duijn CM, Aulchenko YS. The effect of genetic drift in a young genetically isolated population. *Ann Hum Genet*. 2005;69:288-295.
- 8. Dawber TR, Meadors GF, Moore FE, Jr. Epidemiological approaches to heart disease: The framingham study. *American journal of public health and the nation's health*. 1951;41:279-281.
- 9. Genes for Cerebral Hemorrhage on Anticoagulation Collaborative G. Exploiting common genetic variation to make anticoagulation safer. *Stroke; a journal of cerebral circulation.* 2009;40:S64-66.
- 10. Tobin MD,Tomaszewski M,Braund PS,Hajat C,Raleigh SM,Palmer TM, et al. Common variants in genes underlying monogenic hypertension and hypotension and blood pressure in the general population. *Hypertension*. 2008;51:1658-1664.
- 11. Jorgensen T,Borch-Johnsen K,Thomsen TF,Ibsen H,Glumer C,Pisinger C. A randomized nonpharmacological intervention study for prevention of ischaemic heart disease: Baseline results inter99. *European journal of cardiovascular prevention and rehabilitation : official journal of the European Society of Cardiology, Working Groups on Epidemiology & Prevention and Cardiac Rehabilitation and Exercise Physiology.* 2003;10:377-386.
- 12. Holle R,Happich M,Lowel H,Wichmann HE,Group MKS. Kora--a research platform for population based health research. *Gesundheitswesen*. 2005;67 Suppl 1:S19-25.
- 13. Zemunik T,Boban M,Lauc G,Jankovic S,Rotim K,Vatavuk Z, et al. Genome-wide association study of biochemical traits in korcula island, croatia. *Croatian medical journal*. 2009;50:23-33.
- 14. Scholtens S,Smidt N,Swertz MA,Bakker SJ,Dotinga A,Vonk JM, et al. Cohort profile: Lifelines, a threegeneration cohort study and biobank. *International journal of epidemiology*. 2015;44:1172-1180.
- 15. Grobbee DE,Hoes AW,Verheij TJ,Schrijvers AJ,van Ameijden EJ,Numans ME. The utrecht health project: Optimization of routine healthcare data for research. *Eur J Epidemiol*. 2005;20:285-287.
- 16. Bild DE,Bluemke DA,Burke GL,Detrano R,Diez Roux AV,Folsom AR, et al. Multi-ethnic study of atherosclerosis: Objectives and design. *Am J Epidemiol*. 2002;156:871-881.
- 17. de Mutsert R, den Heijer M, Rabelink TJ, Smit JW, Romijn JA, Jukema JW, et al. The netherlands epidemiology of obesity (neo) study: Study design and data collection. *Eur J Epidemiol*. 2013;28:513-523.
- 18. Hofman A,Brusselle GG,Darwish Murad S,van Duijn CM,Franco OH,Goedegebure A, et al. The rotterdam study: 2016 objectives and design update. *Eur J Epidemiol*. 2015;30:661-708.
- 19. Smith BH,Campbell A,Linksted P,Fitzpatrick B,Jackson C,Kerr SM, et al. Cohort profile: Generation scotland: Scottish family health study (gs:Sfhs). The study, its participants and their potential for genetic research on health and illness. *International journal of epidemiology*. 2013;42:689-700.
- 20. Volzke H,Alte D,Schmidt CO,Radke D,Lorbeer R,Friedrich N, et al. Cohort profile: The study of health in pomerania. *International journal of epidemiology*. 2011;40:294-307.
- 21. Spector TD, MacGregor AJ. The st. Thomas' uk adult twin registry. *Twin research : the official journal of the International Society for Twin Studies*. 2002;5:440-443.

- 22. Design of the women's health initiative clinical trial and observational study. The women's health initiative study group. *Controlled clinical trials*. 1998;19:61-109.
- 23. Raitakari OT, Juonala M, Ronnemaa T, Keltikangas-Jarvinen L, Rasanen L, Pietikainen M, et al. Cohort profile: The cardiovascular risk in young finns study. *International journal of epidemiology*. 2008;37:1220-1226.
- 24. Taylor HA, Jr., Wilson JG, Jones DW, Sarpong DF, Srinivasan A, Garrison RJ, et al. Toward resolution of cardiovascular health disparities in african americans: Design and methods of the jackson heart study. *Ethnicity & disease*. 2005;15:S6-4-17.
- 25. Chambers JC,Zhao J,Terracciano CM,Bezzina CR,Zhang W,Kaba R, et al. Genetic variation in scn10a influences cardiac conduction. *Nat Genet*. 2010;42:149-152.
- 26. Holm H,Gudbjartsson DF,Arnar DO,Thorleifsson G,Thorgeirsson G,Stefansdottir H, et al. Several common variants modulate heart rate, pr interval and qrs duration. *Nat Genet*. 2010;42:117-122.
- 27. Ritchie MD, Denny JC, Zuvich RL, Crawford DC, Schildcrout JS, Bastarache L, et al. Genome- and phenomewide analyses of cardiac conduction identifies markers of arrhythmia risk. *Circulation*. 2013;127:1377-1385.
- 28. Behr ER,Savio-Galimberti E,Barc J,Holst AG,Petropoulou E,Prins BP, et al. Role of common and rare variants in scn10a: Results from the brugada syndrome qrs locus gene discovery collaborative study. *Cardiovasc Res.* 2015;106:520-529.
- 29. Faber CG, Lauria G, Merkies IS, Cheng X, Han C, Ahn HS, et al. Gain-of-function nav1.8 mutations in painful neuropathy. *Proc Natl Acad Sci U S A*. 2012;109:19444-19449.
- 30. Rannals MD,Page SC,Campbell MN,Gallo RA,Mayfield B,Maher BJ. Neurodevelopmental models of transcription factor 4 deficiency converge on a common ion channel as a potential therapeutic target for pitt hopkins syndrome. *Rare diseases*. 2016;4:e1220468.
- 31. Chen X,Yu L,Shi S,Jiang H,Huang C,Desai M, et al. Neuronal nav1.8 channels as a novel therapeutic target of acute atrial fibrillation prevention. *Journal of the American Heart Association*. 2016;5
- 32. Smith JG, Magnani JW, Palmer C, Meng YA, Soliman EZ, Musani SK, et al. Genome-wide association studies of the pr interval in african americans. *PLoS Genet*. 2011;7:e1001304.
- 33. Butler AM,Yin X,Evans DS,Nalls MA,Smith EN,Tanaka T, et al. Novel loci associated with pr interval in a genome-wide association study of 10 african american cohorts. *Circ Cardiovasc Genet*. 2012;5:639-646.
- 34. Makita N,Behr E,Shimizu W,Horie M,Sunami A,Crotti L, et al. The e1784k mutation in scn5a is associated with mixed clinical phenotype of type 3 long qt syndrome. *J Clin Invest*. 2008;118:2219-2229.
- 35. Ellinor PT,Nam EG,Shea MA,Milan DJ,Ruskin JN,MacRae CA. Cardiac sodium channel mutation in atrial fibrillation. *Heart Rhythm*. 2008;5:99-105.
- 36. Hershberger RE, Parks SB, Kushner JD, Li D, Ludwigsen S, Jakobs P, et al. Coding sequence mutations identified in myh7, tnnt2, scn5a, csrp3, lbd3, and tcap from 313 patients with familial or idiopathic dilated cardiomyopathy. *Clinical and translational science*. 2008;1:21-26.
- 37. Wang DW, Viswanathan PC, Balser JR, George AL, Jr., Benson DW. Clinical, genetic, and biophysical characterization of scn5a mutations associated with atrioventricular conduction block. *Circulation*. 2002;105:341-346.
- 38. Wang DW,Yazawa K,George AL, Jr.,Bennett PB. Characterization of human cardiac na+ channel mutations in the congenital long qt syndrome. *Proc Natl Acad Sci U S A*. 1996;93:13200-13205.
- 39. Pfeufer A, van Noord C, Marciante KD, Arking DE, Larson MG, Smith AV, et al. Genome-wide association study of pr interval. *Nat Genet*. 2010;42:153-159.
- 40. Ellinor PT, Lunetta KL, Albert CM, Glazer NL, Ritchie MD, Smith AV, et al. Meta-analysis identifies six new susceptibility loci for atrial fibrillation. *Nat Genet*. 2012;44:670-675.
- 41. Verweij N,Mateo Leach I,van den Boogaard M,van Veldhuisen DJ,Christoffels VM,LifeLines Cohort S, et al. Genetic determinants of p wave duration and pr segment. *Circ Cardiovasc Genet*. 2014;7:475-481.
- 42. Kim CA, Delepine M, Boutet E, El Mourabit H, Le Lay S, Meier M, et al. Association of a homozygous nonsense caveolin-1 mutation with berardinelli-seip congenital lipodystrophy. *The Journal of clinical endocrinology and metabolism*. 2008;93:1129-1134.

- 43. Austin ED,Ma L,LeDuc C,Berman Rosenzweig E,Borczuk A,Phillips JA, 3rd, et al. Whole exome sequencing to identify a novel gene (caveolin-1) associated with human pulmonary arterial hypertension. *Circ Cardiovasc Genet*. 2012;5:336-343.
- 44. Cao H,Alston L,Ruschman J,Hegele RA. Heterozygous cav1 frameshift mutations (mim 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. *Lipids in health and disease*. 2008;7:3.
- 45. Fra AM, Mastroianni N, Mancini M, Pasqualetto E, Sitia R. Human caveolin-1 and caveolin-2 are closely linked genes colocalized with wi-5336 in a region of 7q31 frequently deleted in tumors. *Genomics*. 1999;56:355-356.
- 46. Trajkovski M, Hausser J, Soutschek J, Bhat B, Akin A, Zavolan M, et al. Micrornas 103 and 107 regulate insulin sensitivity. *Nature*. 2011;474:649-653.
- 47. Forrester SJ,Elliott KJ,Kawai T,Obama T,Boyer MJ,Preston KJ, et al. Caveolin-1 deletion prevents hypertensive vascular remodeling induced by angiotensin ii. *Hypertension*. 2017;69:79-86.
- 48. Akilesh S,Suleiman H,Yu H,Stander MC,Lavin P,Gbadegesin R, et al. Arhgap24 inactivates rac1 in mouse podocytes, and a mutant form is associated with familial focal segmental glomerulosclerosis. *J Clin Invest*. 2011;121:4127-4137.
- 49. Nishi T,Takahashi H,Hashimura M,Yoshida T,Ohta Y,Saegusa M. Filgap, a rac-specific rho gtpaseactivating protein, is a novel prognostic factor for follicular lymphoma. *Cancer medicine*. 2015;4:808-818.
- 50. den Hoed M,Eijgelsheim M,Esko T,Brundel BJ,Peal DS,Evans DM, et al. Identification of heart rateassociated loci and their effects on cardiac conduction and rhythm disorders. *Nat Genet*. 2013;45:621-631.
- 51. Eijgelsheim M,Newton-Cheh C,Sotoodehnia N,de Bakker PI,Muller M,Morrison AC, et al. Genome-wide association analysis identifies multiple loci related to resting heart rate. *Hum Mol Genet*. 2010;19:3885-3894.
- 52. Li J,Gao Z,Wang X,Liu H,Zhang Y,Liu Z. Identification and functional analysis of long intergenic noncoding rna genes in porcine pre-implantation embryonic development. *Scientific reports*. 2016;6:38333.
- 53. Winkelmann J,Schormair B,Lichtner P,Ripke S,Xiong L,Jalilzadeh S, et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. *Nat Genet*. 2007;39:1000-1006.
- 54. Xiong L,Catoire H,Dion P,Gaspar C,Lafreniere RG,Girard SL, et al. Meis1 intronic risk haplotype associated with restless legs syndrome affects its mrna and protein expression levels. *Hum Mol Genet*. 2009;18:1065-1074.
- 55. Spieler D,Kaffe M,Knauf F,Bessa J,Tena JJ,Giesert F, et al. Restless legs syndrome-associated intronic common variant in meis1 alters enhancer function in the developing telencephalon. *Genome Res*. 2014;24:592-603.
- 56. Mahmoud Al,Kocabas F,Muralidhar SA,Kimura W,Koura AS,Thet S, et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. *Nature*. 2013;497:249-253.
- 57. Linden H,Williams R,King J,Blair E,Kini U. Ulnar mammary syndrome and tbx3: Expanding the phenotype. *American journal of medical genetics. Part A*. 2009;149A:2809-2812.
- 58. Hoogaars WM, Engel A, Brons JF, Verkerk AO, de Lange FJ, Wong LY, et al. Tbx3 controls the sinoatrial node gene program and imposes pacemaker function on the atria. *Genes & development*. 2007;21:1098-1112.
- 59. Sotoodehnia N,Isaacs A,de Bakker PI,Dorr M,Newton-Cheh C,Nolte IM, et al. Common variants in 22 loci are associated with qrs duration and cardiac ventricular conduction. *Nat Genet*. 2010;42:1068-1076.
- 60. Jhang WK,Lee BH,Kim GH,Lee JO,Yoo HW. Clinical and molecular characterisation of holt-oram syndrome focusing on cardiac manifestations. *Cardiology in the young*. 2015;25:1093-1098.
- 61. Wang ZC, Ji WH, Ruan CW, Liu XY, Qiu XB, Yuan F, et al. Prevalence and spectrum of tbx5 mutation in patients with lone atrial fibrillation. *International journal of medical sciences*. 2016;13:60-67.
- 62. Baban A,Postma AV,Marini M,Trocchio G,Santilli A,Pelegrini M, et al. Identification of tbx5 mutations in a series of 94 patients with tetralogy of fallot. *American journal of medical genetics. Part A*. 2014;164A:3100-3107.

- 63. Hiroi Y,Kudoh S,Monzen K,Ikeda Y,Yazaki Y,Nagai R, et al. Tbx5 associates with nkx2-5 and synergistically promotes cardiomyocyte differentiation. *Nat Genet*. 2001;28:276-280.
- 64. Garg V,Kathiriya IS,Barnes R,Schluterman MK,King IN,Butler CA, et al. Gata4 mutations cause human congenital heart defects and reveal an interaction with tbx5. *Nature*. 2003;424:443-447.
- 65. Moskowitz IP,Kim JB,Moore ML,Wolf CM,Peterson MA,Shendure J, et al. A molecular pathway including id2, tbx5, and nkx2-5 required for cardiac conduction system development. *Cell*. 2007;129:1365-1376.
- 66. Daigo Y,Nishiwaki T,Kawasoe T,Tamari M,Tsuchiya E,Nakamura Y. Molecular cloning of a candidate tumor suppressor gene, dlc1, from chromosome 3p21.3. *Cancer research*. 1999;59:1966-1972.
- 67. Audas TE,Li Y,Liang G,Lu R. A novel protein, luman/creb3 recruitment factor, inhibits luman activation of the unfolded protein response. *Molecular and cellular biology*. 2008;28:3952-3966.
- 68. Arking DE,Pulit SL,Crotti L,van der Harst P,Munroe PB,Koopmann TT, et al. Genetic association study of qt interval highlights role for calcium signaling pathways in myocardial repolarization. *Nat Genet*. 2014;46:826-836.
- 69. Nolte IM, Wallace C, Newhouse SJ, Waggott D, Fu J, Soranzo N, et al. Common genetic variation near the phospholamban gene is associated with cardiac repolarisation: Meta-analysis of three genome-wide association studies. *PLoS ONE*. 2009;4:e6138.
- 70. Szafranski P,Von Allmen GK,Graham BH,Wilfong AA,Kang SH,Ferreira JA, et al. 6q22.1 microdeletion and susceptibility to pediatric epilepsy. *Eur J Hum Genet*. 2015;23:173-179.
- 71. Vasan RS, Glazer NL, Felix JF, Lieb W, Wild PS, Felix SB, et al. Genetic variants associated with cardiac structure and function: A meta-analysis and replication of genome-wide association data. *JAMA*. 2009;302:168-178.
- 72. Steinthorsdottir V,Thorleifsson G,Sulem P,Helgason H,Grarup N,Sigurdsson A, et al. Identification of lowfrequency and rare sequence variants associated with elevated or reduced risk of type 2 diabetes. *Nat Genet*. 2014;46:294-298.
- 73. Fuchsberger C,Flannick J,Teslovich TM,Mahajan A,Agarwala V,Gaulton KJ, et al. The genetic architecture of type 2 diabetes. *Nature*. 2016;536:41-47.
- 74. Czyzyk TA,Ning Y,Hsu MS,Peng B,Mains RE,Eipper BA, et al. Deletion of peptide amidation enzymatic activity leads to edema and embryonic lethality in the mouse. *Dev Biol*. 2005;287:301-313.
- 75. Prigge ST, Mains RE, Eipper BA, Amzel LM. New insights into copper monooxygenases and peptide amidation: Structure, mechanism and function. *Cell Mol Life Sci.* 2000;57:1236-1259.
- 76. Braas KM,Stoffers DA,Eipper BA,May V. Tissue specific expression of rat peptidylglycine alpha-amidating monooxygenase activity and mrna. *Molecular endocrinology*. 1989;3:1387-1398.
- 77. Girard B,Ouafik L,Boudouresque F. Characterization and regulation of peptidylglycine alpha-amidating monooxygenase (pam) expression in h9c2 cardiac myoblasts. *Cell and tissue research*. 1999;298:489-497.
- 78. Nishiwaki T,Daigo Y,Tamari M,Fujii Y,Nakamura Y. Molecular cloning, mapping, and characterization of two novel human genes, orctl3 and orctl4, bearing homology to organic-cation transporters. *Cytogenetics and cell genetics*. 1998;83:251-255.
- 79. Zain SM, Mohamed R, Cooper DN, Razali R, Rampal S, Mahadeva S, et al. Genome-wide analysis of copy number variation identifies candidate gene loci associated with the progression of non-alcoholic fatty liver disease. *PLoS ONE*. 2014;9:e95604.
- 80. Zender L,Xue W,Zuber J,Semighini CP,Krasnitz A,Ma B, et al. An oncogenomics-based in vivo rnai screen identifies tumor suppressors in liver cancer. *Cell*. 2008;135:852-864.
- 81. Lipowsky G,Bischoff FR,Schwarzmaier P,Kraft R,Kostka S,Hartmann E, et al. Exportin 4: A mediator of a novel nuclear export pathway in higher eukaryotes. *EMBO J.* 2000;19:4362-4371.
- 82. Ellis KL,Zhou Y,Beshansky JR,Ainehsazan E,Selker HP,Cupples LA, et al. Genetic modifiers of response to glucose-insulin-potassium (gik) infusion in acute coronary syndromes and associations with clinical outcomes in the immediate trial. *Pharmacogenomics J*. 2015;15:488-495.
- 83. Herman DS,Lam L,Taylor MR,Wang L,Teekakirikul P,Christodoulou D, et al. Truncations of titin causing dilated cardiomyopathy. *N Engl J Med*. 2012;366:619-628.
- 84. LeWinter MM, Granzier HL. Titin is a major human disease gene. *Circulation*. 2013;127:938-944.

- 85. Taylor M,Graw S,Sinagra G,Barnes C,Slavov D,Brun F, et al. Genetic variation in titin in arrhythmogenic right ventricular cardiomyopathy-overlap syndromes. *Circulation*. 2011;124:876-885.
- 86. Hackman P,Vihola A,Haravuori H,Marchand S,Sarparanta J,De Seze J, et al. Tibial muscular dystrophy is a titinopathy caused by mutations in ttn, the gene encoding the giant skeletal-muscle protein titin. *American journal of human genetics*. 2002;71:492-500.
- 87. Hackman P, Marchand S, Sarparanta J, Vihola A, Penisson-Besnier I, Eymard B, et al. Truncating mutations in c-terminal titin may cause more severe tibial muscular dystrophy (tmd). *Neuromuscular disorders : NMD*. 2008;18:922-928.
- 88. Lange S,Xiang F,Yakovenko A,Vihola A,Hackman P,Rostkova E, et al. The kinase domain of titin controls muscle gene expression and protein turnover. *Science*. 2005;308:1599-1603.
- 89. Ceyhan-Birsoy O,Agrawal PB,Hidalgo C,Schmitz-Abe K,DeChene ET,Swanson LC, et al. Recessive truncating titin gene, ttn, mutations presenting as centronuclear myopathy. *Neurology*. 2013;81:1205-1214.
- 90. Gerull B. The rapidly evolving role of titin in cardiac physiology and cardiomyopathy. *The Canadian journal of cardiology*. 2015;31:1351-1359.
- 91. Coppe JP, Itahana Y, Moore DH, Bennington JL, Desprez PY. Id-1 and id-2 proteins as molecular markers for human prostate cancer progression. *Clin Cancer Res*. 2004;10:2044-2051.
- 92. Langlands K,Down GA,Kealey T. Id proteins are dynamically expressed in normal epidermis and dysregulated in squamous cell carcinoma. *Cancer research*. 2000;60:5929-5933.
- 93. Rockman SP,Currie SA,Ciavarella M,Vincan E,Dow C,Thomas RJ, et al. Id2 is a target of the beta-catenin/t cell factor pathway in colon carcinoma. *J Biol Chem*. 2001;276:45113-45119.
- 94. Kleeff J,Ishiwata T,Friess H,Buchler MW,Israel MA,Korc M. The helix-loop-helix protein id2 is overexpressed in human pancreatic cancer. *Cancer research*. 1998;58:3769-3772.
- 95. Lasorella A,Boldrini R,Dominici C,Donfrancesco A,Yokota Y,Inserra A, et al. Id2 is critical for cellular proliferation and is the oncogenic effector of n-myc in human neuroblastoma. *Cancer research*. 2002;62:301-306.
- 96. Yokota Y,Mori S. Role of id family proteins in growth control. *Journal of cellular physiology*. 2002;190:21-28.
- 97. Wieczorek A,Balwierz W. The role of id2 protein in neuroblatoma in children. *Pathology oncology research : POR*. 2015;21:999-1004.
- 98. Evans SM,O'Brien TX. Expression of the helix-loop-helix factor id during mouse embryonic development. *Dev Biol*. 1993;159:485-499.
- 99. Jen Y, Manova K, Benezra R. Expression patterns of id1, id2, and id3 are highly related but distinct from that of id4 during mouse embryogenesis. *Developmental dynamics : an official publication of the American Association of Anatomists*. 1996;207:235-252.
- 100. Glowacki G,Braren R,Firner K,Nissen M,Kuhl M,Reche P, et al. The family of toxin-related ecto-adpribosyltransferases in humans and the mouse. *Protein Sci.* 2002;11:1657-1670.
- 101. Beqqali A,Kloots J,Ward-van Oostwaard D,Mummery C,Passier R. Genome-wide transcriptional profiling of human embryonic stem cells differentiating to cardiomyocytes. *Stem cells*. 2006;24:1956-1967.
- 102. Smith SJ,Towers N,Saldanha JW,Shang CA,Mahmood SR,Taylor WR, et al. The cardiac-restricted protein adp-ribosylhydrolase-like 1 is essential for heart chamber outgrowth and acts on muscle actin filament assembly. *Dev Biol*. 2016;416:373-388.
- 103. Eeles RA,Olama AA,Benlloch S,Saunders EJ,Leongamornlert DA,Tymrakiewicz M, et al. Identification of
 23 new prostate cancer susceptibility loci using the icogs custom genotyping array. *Nat Genet*.
 2013;45:385-391, 391e381-382.
- 104. Comuzzie AG,Cole SA,Laston SL,Voruganti VS,Haack K,Gibbs RA, et al. Novel genetic loci identified for the pathophysiology of childhood obesity in the hispanic population. *PLoS ONE*. 2012;7:e51954.
- 105. Chambers JC, Zhang W, Sehmi J, Li X, Wass MN, Van der Harst P, et al. Genome-wide association study identifies loci influencing concentrations of liver enzymes in plasma. *Nat Genet*. 2011;43:1131-1138.

- 106. Hart AB,Engelhardt BE,Wardle MC,Sokoloff G,Stephens M,de Wit H, et al. Genome-wide association study of d-amphetamine response in healthy volunteers identifies putative associations, including cadherin 13 (cdh13). *PLoS ONE*. 2012;7:e42646.
- 107. Behr ER,Ritchie MD,Tanaka T,Kaab S,Crawford DC,Nicoletti P, et al. Genome wide analysis of druginduced torsades de pointes: Lack of common variants with large effect sizes. *PLoS ONE*. 2013;8:e78511.
- 108. Lubitz SA,Brody JA,Bihlmeyer NA,Roselli C,Weng LC,Christophersen IE, et al. Whole exome sequencing in atrial fibrillation. *PLoS Genet*. 2016;12:e1006284.
- 109. Lutz SM, Cho MH, Young K, Hersh CP, Castaldi PJ, McDonald ML, et al. A genome-wide association study identifies risk loci for spirometric measures among smokers of european and african ancestry. *BMC Genet*. 2015;16:138.
- 110. Dina C,Bouatia-Naji N,Tucker N,Delling FN,Toomer K,Durst R, et al. Genetic association analyses highlight biological pathways underlying mitral valve prolapse. *Nat Genet*. 2015;47:1206-1211.
- 111. Lane JM,Vlasac I,Anderson SG,Kyle SD,Dixon WG,Bechtold DA, et al. Genome-wide association analysis identifies novel loci for chronotype in 100,420 individuals from the uk biobank. *Nature communications*. 2016;7:10889.
- 112. Wang K,Li WD,Zhang CK,Wang Z,Glessner JT,Grant SF, et al. A genome-wide association study on obesity and obesity-related traits. *PLoS ONE*. 2011;6:e18939.
- 113. Herold C,Hooli BV,Mullin K,Liu T,Roehr JT,Mattheisen M, et al. Family-based association analyses of imputed genotypes reveal genome-wide significant association of alzheimer's disease with osbpl6, ptprg, and pdcl3. *Mol Psychiatry*. 2016;21:1608-1612.
- 114. Gee HY,Sadowski CE,Aggarwal PK,Porath JD,Yakulov TA,Schueler M, et al. Fat1 mutations cause a glomerulotubular nephropathy. *Nature communications*. 2016;7:10822.
- 115. Morris LG,Kaufman AM,Gong Y,Ramaswami D,Walsh LA,Turcan S, et al. Recurrent somatic mutation of fat1 in multiple human cancers leads to aberrant wnt activation. *Nat Genet*. 2013;45:253-261.
- 116. Surakka I,Horikoshi M,Magi R,Sarin AP,Mahajan A,Lagou V, et al. The impact of low-frequency and rare variants on lipid levels. *Nat Genet*. 2015;47:589-597.
- 117. Albrechtsen A,Grarup N,Li Y,Sparso T,Tian G,Cao H, et al. Exome sequencing-driven discovery of coding polymorphisms associated with common metabolic phenotypes. *Diabetologia*. 2013;56:298-310.
- 118. Chen HJ,Lin CM,Lin CS,Perez-Olle R,Leung CL,Liem RK. The role of microtubule actin cross-linking factor 1 (macf1) in the wnt signaling pathway. *Genes & development*. 2006;20:1933-1945.
- 119. Gupta T,Marlow FL,Ferriola D,Mackiewicz K,Dapprich J,Monos D, et al. Microtubule actin crosslinking factor 1 regulates the balbiani body and animal-vegetal polarity of the zebrafish oocyte. *PLoS Genet*. 2010;6:e1001073.
- 120. Sun Y,Zhang J,Kraeft SK,Auclair D,Chang MS,Liu Y, et al. Molecular cloning and characterization of human trabeculin-alpha, a giant protein defining a new family of actin-binding proteins. *J Biol Chem*. 1999;274:33522-33530.
- 121. Fassett JT,Xu X,Kwak D,Wang H,Liu X,Hu X, et al. Microtubule actin cross-linking factor 1 regulates cardiomyocyte microtubule distribution and adaptation to hemodynamic overload. *PLoS ONE*. 2013;8:e73887.
- 122. Doherty GJ,McMahon HT. Mediation, modulation, and consequences of membrane-cytoskeleton interactions. *Annual review of biophysics*. 2008;37:65-95.
- 123. Karakesisoglou I, Yang Y, Fuchs E. An epidermal plakin that integrates actin and microtubule networks at cellular junctions. *J Cell Biol*. 2000;149:195-208.
- 124. Wu X,Kodama A,Fuchs E. Acf7 regulates cytoskeletal-focal adhesion dynamics and migration and has atpase activity. *Cell*. 2008;135:137-148.
- 125. Lin CM, Chen HJ, Leung CL, Parry DA, Liem RK. Microtubule actin crosslinking factor 1b: A novel plakin that localizes to the golgi complex. *J Cell Sci*. 2005;118:3727-3738.
- 126. Deo R,Nalls MA,Avery CL,Smith JG,Evans DS,Keller MF, et al. Common genetic variation near the connexin-43 gene is associated with resting heart rate in african americans: A genome-wide association study of 13,372 participants. *Heart Rhythm*. 2013;10:401-408.

- 127. Dasgupta C,Martinez AM,Zuppan CW,Shah MM,Bailey LL,Fletcher WH. Identification of connexin43 (alpha1) gap junction gene mutations in patients with hypoplastic left heart syndrome by denaturing gradient gel electrophoresis (dgge). *Mutat Res.* 2001;479:173-186.
- 128. Sinner MF, Tucker NR, Lunetta KL, Ozaki K, Smith JG, Trompet S, et al. Integrating genetic, transcriptional, and functional analyses to identify 5 novel genes for atrial fibrillation. *Circulation*. 2014;130:1225-1235.
- 129. Li WE, Waldo K, Linask KL, Chen T, Wessels A, Parmacek MS, et al. An essential role for connexin43 gap junctions in mouse coronary artery development. *Development*. 2002;129:2031-2042.
- 130. Britz-Cunningham SH,Shah MM,Zuppan CW,Fletcher WH. Mutations of the connexin43 gap-junction gene in patients with heart malformations and defects of laterality. *N Engl J Med*. 1995;332:1323-1329.
- 131. Severs NJ. Cardiac muscle cell interaction: From microanatomy to the molecular make-up of the gap junction. *Histol Histopathol*. 1995;10:481-501.
- 132. Global Lipids Genetics C,Willer CJ,Schmidt EM,Sengupta S,Peloso GM,Gustafsson S, et al. Discovery and refinement of loci associated with lipid levels. *Nat Genet*. 2013;45:1274-1283.
- 133. Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki M, et al. Biological, clinical and population relevance of 95 loci for blood lipids. *Nature*. 2010;466:707-713.
- 134. Waterworth DM,Ricketts SL,Song K,Chen L,Zhao JH,Ripatti S, et al. Genetic variants influencing circulating lipid levels and risk of coronary artery disease. *Arterioscler Thromb Vasc Biol*. 2010;30:2264-2276.
- 135. Meyer C,Kowarz E,Hofmann J,Renneville A,Zuna J,Trka J, et al. New insights to the mll recombinome of acute leukemias. *Leukemia*. 2009;23:1490-1499.
- 136. de Vries PS, Chasman DI, Sabater-Lleal M, Chen MH, Huffman JE, Steri M, et al. A meta-analysis of 120 246 individuals identifies 18 new loci for fibrinogen concentration. *Hum Mol Genet*. 2016;25:358-370.
- 137. Hoglinger GU, Melhem NM, Dickson DW, Sleiman PM, Wang LS, Klei L, et al. Identification of common variants influencing risk of the tauopathy progressive supranuclear palsy. *Nat Genet*. 2011;43:699-705.
- 138. Dirkx E,Gladka MM,Philippen LE,Armand AS,Kinet V,Leptidis S, et al. Nfat and mir-25 cooperate to reactivate the transcription factor hand2 in heart failure. *Nature cell biology*. 2013;15:1282-1293.
- 139. Shen L,Li XF,Shen AD,Wang Q,Liu CX,Guo YJ, et al. Transcription factor hand2 mutations in sporadic chinese patients with congenital heart disease. *Chin Med J (Engl)*. 2010;123:1623-1627.
- 140. McFadden DG,Barbosa AC,Richardson JA,Schneider MD,Srivastava D,Olson EN. The hand1 and hand2 transcription factors regulate expansion of the embryonic cardiac ventricles in a gene dosage-dependent manner. *Development*. 2005;132:189-201.
- 141. Srivastava D,Cserjesi P,Olson EN. A subclass of bhlh proteins required for cardiac morphogenesis. *Science*. 1995;270:1995-1999.
- 142. Yelon D,Ticho B,Halpern ME,Ruvinsky I,Ho RK,Silver LM, et al. The bhlh transcription factor hand2 plays parallel roles in zebrafish heart and pectoral fin development. *Development*. 2000;127:2573-2582.
- 143. Zhao Y,Samal E,Srivastava D. Serum response factor regulates a muscle-specific microrna that targets hand2 during cardiogenesis. *Nature*. 2005;436:214-220.
- 144. Shin SY, Fauman EB, Petersen AK, Krumsiek J, Santos R, Huang J, et al. An atlas of genetic influences on human blood metabolites. *Nat Genet*. 2014;46:543-550.
- 145. Brown EL,Below JE,Fischer RS,Essigmann HT,Hu H,Huff C, et al. Genome-wide association study of staphylococcus aureus carriage in a community-based sample of mexican-americans in starr county, texas. *PLoS ONE*. 2015;10:e0142130.
- 146. Baumgartner MR, Hu CA, Almashanu S, Steel G, Obie C, Aral B, et al. Hyperammonemia with reduced ornithine, citrulline, arginine and proline: A new inborn error caused by a mutation in the gene encoding delta(1)-pyrroline-5-carboxylate synthase. *Hum Mol Genet*. 2000;9:2853-2858.
- 147. Skidmore DL, Chitayat D, Morgan T, Hinek A, Fischer B, Dimopoulou A, et al. Further expansion of the phenotypic spectrum associated with mutations in aldh18a1, encoding delta(1)-pyrroline-5-carboxylate synthase (p5cs). *American journal of medical genetics. Part A*. 2011;155A:1848-1856.
- 148. Consortium GT. Human genomics. The genotype-tissue expression (gtex) pilot analysis: Multitissue gene regulation in humans. *Science*. 2015;348:648-660.