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ABSTRACT

Cortisol is an important stress hormone affected by a variety of biological and

environmental factors, such as the circadian rhythm, exercise and psychological stress. Cortisol is

mostly measured using blood or saliva samples. A number of genetic variants have been found to

contribute to cortisol levels with these methods. While the effects of several specific single genetic

variants is known, the joint genome-wide contribution to cortisol levels is unclear. Our aim was to

estimate the amount of cortisol variance explained by common single nucleotide polymorphisms,

i.e. the SNP heritability, using a variety of cortisol measures, cohorts and analysis approaches. We

analyzed morning plasma (n=5,705) and saliva levels (n=1,717), as well as diurnal saliva levels

(n=1,541), in the Rotterdam Study using genomic restricted maximum likelihood estimation.

Additionally, linkage disequilibrium score regression was fitted on the results of genome-wide

association studies (GWAS) performed by the CORNET consortium on morning plasma cortisol

(n=12,597) and saliva cortisol (n=7,703). No significant SNP heritability was detected for any

cortisol measure, sample or analysis approach. Point estimates ranged from 0% to 9%. Morning

plasma cortisol in the CORNET cohorts, the sample with the most power, had a 6% [95%CI: 0-

13%] SNP heritability. The results consistently suggest a low SNP heritability of these acute and

short-term measures of cortisol. The low SNP heritability may reflect the substantial environmental

and, in particular, situational component of these cortisol measures. Future GWAS will require very

large sample sizes. Alternatively, more long-term cortisol measures such as hair cortisol samples

are needed to discover further genetic pathways regulating cortisol concentrations.
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1 Introduction

Cortisol secretion is regulated by the hypothalamic-pituitary-adrenal axis in response to

various biological and environmental factors, including physical stressors such as intensive

resistance exercise (West and Phillips, 2012) or injury (Barton et al., 1987), and psychological

stressors such as public speaking and demanding cognitive tasks (Kudielka et al., 2009). Cortisol

secretion has a marked circadian rhythm: secretion peaks shortly after awakening and then drops

throughout the day, reflecting the hormone’s role in regulating energy metabolism (Adam, 2006).

Additionally, cortisol is secreted rhythmically resulting in a pulsatile ultradian rhythm (Young et al.,

2004). The combination of these factors leads to substantial systematic and unsystematic variation

of cortisol levels throughout the day.

Cortisol levels can be assessed with a variety of methods, the most common being blood in

plasma and saliva samples. Plasma samples represent bound and unbound cortisol

concentrations, whereas saliva represents the bioactive free cortisol. These measures have a

modest to good correlation (Gozansky et al., 2005; Restituto et al., 2008) and have been

associated with various traits and states: BMI (Ruttle et al., 2013), cardiovascular risk factors

including hyperglycaemia (Walker, 2007), psychiatric disorders, such as post-traumatic stress

disorder, schizophrenia or bipolar disorder (Girshkin et al., 2014; Yehuda and Seckl, 2011) and

treatment response to depression (Fischer et al., 2016). Saliva cortisol can be sampled non-

invasively, which may reduce the chance of inducing stress, makes repeated measurements more

feasible, and facilitates mapping of day-time profiles. Repeated cortisol measures tend to show

higher between-visit reliability than single measures at awakening or 8am (Elder et al., 2016;

Golden et al., 2011).

Plasma and saliva cortisol have been investigated in twin studies to determine the extent of

the genetic contribution underlying the hormone. For acute plasma cortisol measures, the
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estimates range from low (14%) to moderate heritability (45%) (Froehlich et al., 2000; Inglis et al.,

1999; Meikle et al., 1988). Wüst, Federenko, Hellhammer, & Kirschbaum (2000) reported 0%

heritability for acute saliva levels at 8am and total day-time profiles, and observed a large

contribution of shared environment (>40%). These family studies rely on relatedness information

obtained from known familiar relationships instead of direct molecular measurements such as SNP

arrays. Molecular genetic studies that can clarify the nature and extent of the genetic effects

underlying cortisol are lacking, although they could advance our understanding of the genetic

contribution to stress vulnerability as assessed by cortisol. A genome-wide association study

(GWAS) by the cortisol network consortium (CORNET) successfully detected and replicated one

genetic locus associated with morning plasma cortisol levels, suggesting that common autosomal

gene variants are associated with this phenotype (Bolton et al., 2014). It is plausible that a

substantial number of variants associated with cortisol were not identified due to stringent multiple

testing corrections required in GWAS. If this is the case, then the joint effect of all SNPs should be

larger than the variance explained by the locus found (<1%).

In the present study, we aimed to quantify the SNP heritability of cortisol, i.e the variance

jointly explained by common autosomal single nucleotide polymorphisms. The SNP heritability

information represents a more direct measure of the genetic predisposition to high or low cortisol

stemming from additive genetic effects of common gene variants compared to the broad-sense

heritability estimated in family studies. SNP heritability can therefore inform future GWA studies

about sample size and potential success. We focus on cortisol measured in plasma and saliva

measured in elderly participants from the Rotterdam Study and in mixed ages from the CORNET

cohorts. This allowed the study of acute morning levels (plasma and saliva) and day-time profiles

(saliva) in large sample sizes. SNP heritability can be estimated with different methods. In this

study we used genomic restricted maximum likelihood estimation (GREML) (Yang, Lee, Goddard,

& Visscher, 2011) in the Rotterdam Study as well as LD score regression in the CORNET GWAS

results.



7

2 Methods

2.1 Rotterdam Study

2.1.1 Participants

The Rotterdam Study is a population-based cohort investigating chronic disease and their

risk factors in elderly, see Hofman et al. (2015) for details. The Rotterdam Study includes 14,926

participants aged 45 and older. Study protocols were approved by the medical ethics committee

according to the Population Study Act Rotterdam Study, executed by the Ministry of Health,

Welfare and Sports of the Netherlands. Written informed consent was obtained from all

participants.

Plasma cortisol information was available in 9836 participants performed in 1997-2008. For

8501, complete information on genetics was available. 2796 participants were removed from

GREML analyses due to excessive relatedness (see 2.1.2), resulting in a GREML sample of 5705.

In the time adjusted analyses, a further 83 were excluded due to missing information regarding

timing of sampling.

Saliva cortisol was available in 2034 participants of which 1982 had complete data on

genetics. After removal of 265 participants due to excessive relatedness 1717 individuals remained

with acute saliva level upon awakening. Of those, 1541 had also information on later time points for

total day-time cortisol computations. See Table 1 for participant characteristics.

2.1.2 Measurements

Plasma cortisol was collected from 8:00h to 20:00h. 75% of samples were collected before

10:30 and 99% before 15:30. Cortisol was measured using the LC-MS/MS method with the CHS

MSMS Steroids Kit (Perkin Elmer, Turku, Finland) containing 2H3-cortisol as internal standard.

Chromatographic separation was performed on a Waters (Milford, MA, USA) Acquity UPLC HSS

T3 1.8µm column and quantified by tandem mass spectrometry using a Xevo TQ-S system

(Waters, Milford, MA).
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Sarstedt Cortisol Salivette collection tubes (Sarstedt, Rommelsdorf, Germany) were used to

collect saliva after awakening, 30 min after awakening, at 17:00 and at bedtime by the participants

(Dekker et al., 2008). Participants were instructed to note the exact time of saliva collection, and

not to eat or brush teeth 15min before collection. An enzyme immunoassay (IBL International

Gmbh Hamburg, Hamburg, Germany) was used to analyze the samples. We investigated

awakening cortisol levels and diurnal cortisol, calculated by the area under the curve in respect to

ground (AUCg).

In the Rotterdam Study genotyping was performed using Illumina HumanHap 550v3 and

Illumina HumanHap 610. The genotyped dataset was restricted to persons who reported that they

were from European descent. Ethnic outliers were further excluded by removing samples which

showed more than 4SD difference to the study population mean on any of the first 4 dimensions of

a mutidimensional scaling analysis. We also excluded samples with gender mismatch and excess

autosomal heterozygosity as well as duplicates and monozygotic twins (>97% estimated identity-

by-descent proportion). Furthermore, second degree cousins or closer relatives were excluded

during the GREML analysis by using a GRM cutoff of 0.025 to avoid bias from shared environment.

MACH 1.0 software was used to impute to ~30M SNPs based on the 1000 genomes Phase I

version 3 reference panel (The 1000 Genomes Project Consortium, 2015). SNPs included in

imputation met the thresholds minor allele frequency>=1%, Hardy-Weinberg equilibrium p >10E-

06, and a SNP call rate >=98.0%.

2.1.3 GREML

SNP heritability of the cortisol measurements in the Rotterdam Study were estimated using

individual level data with GREML, as implemented in Genome-wide Complex Trait Analysis

(GCTA) 1.25.3 (Yang et al., 2011). GREML quantifies how well the similarity in the genotype

between study participants explains the similarity in phenotype. Genetic similarity was established

by computing a genetic relatedness matrix (GRM). We used 8,131,668 imputed autosomal SNPs

to create the GRM, after filtering for imputation quality (R² > 0.5) and minor allele frequency (MAF)

>= 0.01. The GRM was specified as a random effect predicting cortisol levels. To test whether this
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genetic effect statistically significantly predicts the phenotype, we compared the GRM to a simpler

model without the GRM using a likelihood ratio test.

Visual examinations of the total genetic effect and residuals using QQ-plots showed

deviations from normality for the saliva measurements. The distribution was normal after square

root transformation of hormone levels for saliva cortisol. A constant (+1) was added before

transformation to avoid zero values. We report results from analyses on transformed saliva and

untransformed plasma levels. Additionally, we performed a power analysis as described by

Visscher et al. (2014). The plasma cortisol GREML analyses were well powered to detect 16%

heritability (power=80% at α=0.05 and 2E-5 genetic relationship). The power to detect SNP 

heritability was less in the saliva GREML analyses and thus these analyses have less precision.

Covariates and Confounders

We adjusted the phenotype in all analyses for age, sex and four principal components (PC)

of ancestry (computed with GCTA). This was achieved by regressing the phenotype on the

covariates and using the residuals as outcome in the GREML analysis. The residuals were

computed in R 3.2.3. (R Core Team, 2015) Since plasma cortisol levels were measured in three

different Rotterdam Study cohorts, a random intercept on the cohort level was introduced in the

regression model of plasma cortisol using the lme4 1.1-10 package (Bates et al., 2014).

Additionally, we performed a sensitivity analysis with the plasma data aimed at reducing the

environmental variance. This model was adjusted for time and fitted in participants with blood

sampling before 11am and no self-reported corticosteroid use (n=4,696). To account for non-linear

effects, time-of-day was specified using cubic splines with three degrees of freedom. The residuals,

representing time-adjusted plasma levels, were then used in further GREML analyses.

2.2 CORNET Consortium Plasma and Saliva Cortisol GWAS

Detailed description of the CORNET GWAS on plasma cortisol can be found in Bolton et al.

(2014). Briefly, basal morning plasma cortisol was measured in 12,597 participants in 11 western

European cohorts. Blood samples were collected between 7am and 11am and analyzed using
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immunoassays. All participants were at least 17 years old and of European ancestry, were not

using glucocorticoids, pregnant, or breast feeding. In total 2945 participants (23%) were included

from the Rotterdam Study. However, the measurements were collected in a different study wave

than the one used for GREML analyses. HapMap-imputed autosomal SNPs were associated with

z-scores of log-transformed plasma cortisol levels in an age, sex and time adjusted additive model.

The SNP effects were meta-analyzed with a fixed effect model using inverse-variance weighting.

After quality control, the data featured 2,660,191 SNPs with minor allele frequency >2%.

In parallel, an additional GWAS of morning saliva levels was performed. This study is

unpublished and therefore is presented in more detail. Morning (at awakening) saliva cortisol was

measured in 7,703 participants in 8 cohorts: the British 1958 Birth Cohort-Type 1 Diabetes

Genetics Consortium (N=1762); the British 1958 Birth Cohort-Wellcome Trust Case-Control

Consortium (N=1052)(Power et al., 2006); the Netherlands Study of Depression and Anxiety

(N=1220) (Penninx et al., 2008); the Netherlands Twin Register (N=162) (Boomsma et al., 2006),

the Rotterdam Study I (N=1767); the Rotterdam Study III (N=1119); the Multi-Ethnic Study of

Atherosclerosis (N=166) (Bild et al., 2002), and the Tracking Adolescents’ Individual Lives Survey

(N=455) (Huisman et al., 2008). Only awakening samples collected before 11 am were included in

the analyses. Participants using systemic corticosteroids and pregnant and breast-feeding women

were excluded from the analyses. All subjects were at least 16 years old and of European ancestry.

Details of the genotyping and imputation are given in Table S2. Genotype quality control was

performed in each study separately (HWE P-value >10-6, MAF >0.01, SNP-call-rate >95%). A z-

score was calculated (cortisol at awakening per SD-score in the cohort) to standardize cortisol

measurements across cohorts. A linear regression analysis was performed on z-scores of morning

saliva cortisol levels adjusted for sex, age and genetic ancestry (cohort specific) using all imputed

SNPs.

The meta-analysis was performed with a fixed-effects inverse variance model using the

software METAL (Willer et al., 2010). In addition to study-specific pre-imputation quality control,

SNPs with a MAF <0.05 and an observed to expected variance ratio (imputation quality) less than
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0.3 were excluded at the meta-analysis level. Furthermore, only SNPs with information from 4 or

more studies were included, resulting in a final SNP number of 2,156,702 SNPs. Genomic control

correction was applied to each study. This GWA morning cortisol saliva meta-analysis has an

overlap with the GREML analysis of 1767 participants/measurements (23%) from the Rotterdam

Study. QQ and Manhattan plots were created with qqman 0.1.4.(Turner, 2014)

2.2.1 LD Score Regression

LD Score regression exploits the relationship between SNP-Phenotype association

strengths and linkage disequilibrium (LD) patterns (Bulik-Sullivan et al., 2015). Some SNPs show

stronger associations than expected due to chance. Assuming true causal effects, the SNPs which

are in higher linkage disequilibrium (LD) with nearby SNPs are expected to have more inflated test

statistics, because they are more likely to tag causal variants with stronger effects. This makes it

possible to use a LD score of a SNP, defined as the sum of r² in a 1cM region, as a predictor of the

association strength in a regression. The variance explained by the LD score is equivalent to the

SNP heritability estimated by GREML. The advantage of LD score regression is, that it can be

conducted with summary data from a GWAS and no individual level information is required.

However, this analysis tends to have larger standard errors compared to GREML, which uses

individual level data and thus can test SNP heritability effects directly.

The SNP h² was estimated using LD score regression 1.0.0 (Bulik-Sullivan et al., 2015) in

the CORNET GWAS data. Since imputation quality can confound LD score regression results, we

restricted the analysis to a list of well-imputed SNPs, as recommended by the software authors.

After applying default quality control settings (see Table S3), the final SNP number was 1,028,327

for plasma cortisol and 951,308 for saliva cortisol.
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3 Results

3.1 SNP Heritability

Descriptive statistics of the plasma and saliva cortisol levels can be found in Table 1. SNP

heritability estimates were low for all cortisol measurement methods, analytical approaches, and

cohorts. See Table 2 for full results.

3.1.1 Plasma Cortisol

We estimated the SNP heritability of plasma cortisol using individual level data of the

Rotterdam Study (n=5,705) with GREML. In this cohort approximately 1% [95%CI: 0-12%] of

variance in plasma cortisol could be explained by common autosomal gene variants. Adjusting for

time of day and excluding participants with plasma cortisol measurements after 11am or those

using corticosteroids did not meaningfully change results.

We further investigated the SNP heritability of plasma cortisol in a larger consortium

sample: the CORNET cohorts (ncohorts= 11, nparticipants=12,597). We applied LD score regression to

estimate SNP heritability of plasma cortisol across multiple cohorts using the summary results of a

GWAS meta-analysis. The variance explained for this larger sample was also low with 6% [95%CI:

0-13%].

3.1.2 Saliva Cortisol

In addition to plasma cortisol, we estimated the SNP heritability of two saliva cortisol

phenotypes: awakening and diurnal levels. First, we estimated the variance explained of saliva

awakening levels in the Rotterdam Study with GREML (n=1,717). The heritability in this sample

was 9% [95%CI: 0-48%]. Repeating the analysis in the larger CORNET sample (ncohorts= 8,

nparticipants=7,703) using LD score regression on GWAS meta-analysis summary statistics showed a

negative heritability estimate (-0.0833). Phenotypes with low heritability can be estimated as

negative due to sampling variance, which suggests population heritability close to 0 and an upper
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95% confidence interval of 3%. Finally, we estimated the SNP heritability of diurnal cortisol levels

(AUCg). These were only available in the Rotterdam Study (n=1,541). In this sample the heritability

was estimated at 4% [95%CI: 0-45%].

3.2 Morning Plasma and Saliva Cortisol GWAS

The CORNET GWAS meta-analysis of plasma cortisol, which was previously published

(Bolton et al., 2014), identified 4 SNPs in the SERPINA6/SERPINA1 locus, namely rs12589136,

rs2749527, rs2749529 and rs11621961.

However, no SNP reached genome-wide significance (p < 5*10-8) in the GWAS for

awakening saliva cortisol. Table S4 shows results of the top 1000 associated SNPs and Figure 2

displays a Manhattan plot. Two loci showed suggestive associations (p < 5*10-7). The T allele of

rs1170109 (chr13:42779694) was associated with a 0.12 SD increase in cortisol levels (SE=0.02,

p=3.95*10-7, MAF=12%, n=7,690) with a homogeneous effect across the cohorts (I²=0%). Several

SNPs from the same locus, close to the gene DGKH, showed suggestive effects as well (see

Figure 3 for a LocusZoom plot (Pruim et al., 2011)). The locus was not associated with plasma

cortisol (β=0.03, SE=0.02, p=0.17, I²=0%, n=12,592). In the second locus, the A allele of 

rs6768297 (chr3:168334386) was associated with 0.34 standard deviations (SD) lower cortisol

levels (SE=0.06, p=2.01*10-7). Furthermore, the SNP showed a nominally significant (α=0.05) 

association with plasma cortisol in the same direction (β=-0.08, SE=0.03, p=0.01, I²=0%, 

n=11,441). Rs6768297 had a low MAF (6%), high effect heterogeneity (I²=85.5%) and information

was only available in 40% of the sample (n=3054). None of the four SNPs associated with plasma

cortisol were associated with saliva cortisol (all p<0.56).

The LD score intercept was 1.0031 (SE=0.0066) and 1.0085 (SE=0.0073) for the plasma

and saliva GWAS, respectively, suggesting no inflation due to population stratification. The QQ

plots also showed no problematic inflation (see Figure 1 for saliva).
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4 Discussion

The low heritability of plasma cortisol in two large samples estimated by two different

approaches strongly suggests that plasma cortisol is not substantially affected by the additive

effects of autosomal SNPs. The same conclusion can be drawn for morning saliva cortisol, which

was also estimated by two analytical approaches, and to a lesser extent for diurnal cortisol.

No SNP reached genome-wide significance in a GWAS of morning saliva cortisol levels,

which is expected for traits with low SNP heritability analyzed in relatively small samples. Two loci

showed suggestive associations. Interestingly, one top SNP rs6768297 lies within the EGFEM1P

gene, which has a high and specific expression in the pituitary according to RNA expression data

(1.5 reads per kilobase per million)(GTEx-Portal, 2017; Lonsdale et al., 2013). Furthermore, the

SNP showed a nominally significant association with plasma cortisol in the same direction as saliva

cortisol.

However, the lack of genome-wide significance, low sample size, low MAF and high effect

heterogeneity also cast doubt as to whether the rs6768297 association with cortisol would replicate

in a completely independent sample. The SERPINA6/SERPINA1 locus identified in the plasma

cortisol GWAS (Bolton et al., 2014) appears to be specific to plasma cortisol levels.

The results are consistent with phenotypic studies indicating that only a small proportion of

cortisol variance shows a stable trait-like pattern. In three different studies Ross, Murphy, Adam,

Chen, & Miller (2014) found that 44.4%-75.5% of total day-time cortisol output variance was under

day-to-day fluctuations. Studying children through ages 9-15, Shirtcliff et al. (2012) found that

situation-specific environmental influences can explain 52% of cortisol variance (excluding

circadian rhythm). The authors conclude that only 13% of the cortisol variance at a given time

shows trait-like stability over the years, which coincides with the upper confidence intervals found

for the heritability of acute plasma levels. These studies highlight the fact that cortisol secretion and

metabolism is a highly dynamic process adapting to not only short-term, but also long-term

situational contexts, which results in considerable “noise” in genetic studies.
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This notion is supported by the low heritability of the diurnal cortisol measurements.

Reducing the within-day variation appears to be insufficient to reduce the contextual noise. This

conclusion is further supported by the small effect adjusting for time-of-day had on the plasma

cortisol estimates and the low heritability of awakening saliva cortisol. The latter has a precise

circadian definition, though sampling can be difficult to time in a home environment. Furthermore,

after excluding participants with plasma cortisol measurements after 11am and corticosteroid use,

heritability estimates remained under 1%.

Interestingly, long-term associations between single cortisol measures in adulthood and

psychosocial problems and adversities in childhood have been found (Power et al., 2012, 2011).

The variability might thus reflect environmental exposures, but for genetic studies more long-term

profiles of cortisol may be needed. These can be measured using hair samples, which might

represent more trait-like effects with less environmental influence (Noppe et al., 2015; Rippe et al.,

2015). However, long-term environmental contexts spanning months or years also contribute to the

cortisol variance and it is unclear yet to what extent 3 to 6 month measurements shall reduce

environmental noise.

Therefore there may not be a single simplistic genomic heritability of cortisol levels. It is

tempting to speculate that the heritability of other cortisol phenotypes is higher. Indeed the

reliability of, for example, the total daily cortisol values (AUCg) is higher than single morning

samples (Elder et al., 2016; Golden et al., 2011), but it represents a distinct feature of the cortisol

secretion pattern. The cortisol awakening response or diurnal slopes are two other examples of

characterizing diurnal changes. These may show a different balance of genetic and environmental

influences than total daily values or hair cortisol. The awakening response or diurnal slopes may

show higher heritability than the tested phenotypes, though, it should be noted that they show less

stability than total daily output (Ross et al., 2014). Another potentially interesting phenotype is

cortisol reactivity to various stressors. Here again the heritability may be different and may even

change depending on the stressor. Unfortunately, sample sizes for stress reactivity will likely be

smaller. Future research is required to determine the SNP heritability of these alternative



16

phenotypes and characterize potential differences between them, although this may be a

challenging research field.

The very low diurnal cortisol heritability is in line with a twin-study reporting no genetic

effects for day-time profiles (Wüst et al., 2000). The same study found a non-significant heritability

of 26% for awakening cortisol, which is compatible with the non-significant point estimate of 9%

SNP heritability in the GREML analysis. Further, the observed 0% to 6% SNP heritability for

(mostly morning) plasma and saliva levels (LD score regression) are similar to the 0% and 14%

twin heritabilities reported for saliva and plasma morning levels (Froehlich et al., 2000; Wüst et al.,

2000). However, they show a substantial difference to twin studies finding a 45% heritability of

acute plasma levels (Inglis et al., 1999; Meikle et al., 1988).

SNP heritability is expected to be lower than twin heritability, since this estimate does not

include the effects of rare, structural and X-linked variants, which are captured in twin studies.

Gene-gene and gene-environment interactions can also substantially increase standard twin

heritability estimates (Zuk et al., 2012). Alternatively, 45% twin heritability of acute cortisol

measurements might be an overestimation, which would be consistent with the fact that the twin

studies are highly inconsistent.

The LD score regression and GREML analysis of plasma cortisol in the CORNET and

Rotterdam Study samples had good power to detect modest heritability. The negative findings in

addition to the convergent evidence from the smaller saliva cortisol samples suggest that acute

cortisol measures have low SNP heritability. However, the evidence is less clear for day-time

profiles. These were only available in a small sample and have very wide confidence intervals, thus

firm conclusions cannot be made. Another limitation is that the CORNET and Rotterdam Study

data have an overlap in participants of approximately 20%. The samples were thus not completely

independent. However, considering that the majority of the observations did not overlap and the

measurements were taken at different times and assessed in different laboratories, the data

nevertheless support robustness of the largely negative results.
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The findings suggest that common autosomal SNPs are poor predictors of acute cortisol

levels. However, predictive power is not equal to importance. Crucial cortisol regulating loci are

highly conserved: mammals and fish have a similar stress physiology. Among others,

corticotrophin-releasing hormone genes are orthogonal with substantial overlap in amino acid

identity (Huising et al., 2004). This highlights the importance of cortisol related genes, but also

suggests that natural selection restricts the amount of variation and in turn effect sizes and

predictive power. This may suggest, that if SNPs are identified despite the low SNP heritability,

such as SNPs of the SERPINA6/SERPINA1 locus in the plasma cortisol GWAS, they are all the

more important.

Unfortunately, it follows from the presented results, that detecting these SNPs will be

difficult. Since most SNPs are expected to have a relatively low predictive contribution compared to

the environment and stochastic factors, very large sample sizes are probably required to discover

further loci. Given the apparent importance of cortisol genetics, GWAS seems nevertheless a

worthwhile endeavor to uncover further cortisol related biological pathways.
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Tables

Table 1: Descriptive statistics of the Rotterdam Study cortisol measurements and
participant characteristics

Cortisol Phenotype Median Levels in nmol/l
(25%; 75% quantile)

Median Age in years
(25%; 75% quantile)

Sex (%
female)

Median time of
collection in Hr
(25%; 75%
quantile)

Plasma 345.6 (281.7;418.1) 63.6 (58.2;72.44) 57% 0942 (0900;1030)

Saliva (awakening) 13.15 (8.7;18.8) 74.3 (70.5;78.9) 56% 0730 (0700;0806)

Saliva (AUCg) 7.90 (5.7;10.4) 74.3 (70.5;78.8) 55% -

Table 2: SNP Heritability estimates of plasma and saliva cortisol measurements.

Cortisol Phenotype Analysis
Method

Number of
SNPs

n SNP h² SE p

Main Analyses:

Plasma GREML 8,131,668 5,705 0.006 0.059 0.460

Plasma LD Score 1,028,327 12,597 0.061 0.035 -

Saliva GREML 8,131,668 1,717 0.090 0.200 0.329

Saliva (AUCg) GREML 8,131,668 1,541 0.041 0.210 0.420

Saliva LD Score 951,308 7,703 -0.083 0.060 -

Sensitivity Analysis:

Plasma-11am GREML 8,131,668 4,696 0.000 0.073 0.500

Analyses were adjusted for age, sex and ancestry. Plasma cortisol GREML analyses were further adjusted
for cohort effects. Additionally, a sensitivity analysis with adjustment for time-of-day and a subset of
participants with measurements before 11am and no reported corticosteroid use is reported (Plasma-11am).
Negative heritability values can occur for LD score regression analyses due to sampling vaiance.
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Figures

Figure 1 Quantile-quantile plot of observed -log10 p values vs expected -log10 p values assuming

chance findings. Diagonal line indicates a p value distribution compatible with chance finding.

Upward deviations indicate p values more significant than expected.

Figure 2 Manhattan plot of -log10 p values vs SNP position. SNPs above the horizontal line indicate

suggestive findings (p<5x10-7).

Figure 3 Regional plot around lead SNP rs1170109. -log10 p values of rs1170109 and other

top1000 SNPs in the region are displayed color coded for strength of correlation.



24

References

Adam, E.K., 2006. Transactions among adolescent trait and state emotion and diurnal and

momentary cortisol activity in naturalistic settings. Psychoneuroendocrinology 31, 664–679.

doi:10.1016/j.psyneuen.2006.01.010

Barton, R., Stoner, H., Watson, S., 1987. Relationships among plasma cortisol,

adrenocorticotrophin, and severity of injury in recently injured patients. J. Trauma 27, 384–

392.

Bates, D., Mächler, M., Bolker, B.M., Walker, S.C., 2014. Fitting Linear Mixed-Effects Models using

lme4. J. Stat. Softw. 1–51.

Bild, D.E., Bluemke, D.A., Burke, G.L., Detrano, R., Diez Roux, A. V., Folsom, A.R., Greenland, P.,

Jacobs, D.R., Kronmal, R., Liu, K., Nelson, J.C., O’Leary, D., Saad, M.F., Shea, S., Szklo, M.,

Tracy, R.P., 2002. Multi-Ethnic Study of Atherosclerosis: Objectives and design. Am. J.

Epidemiol. 156, 871–881. doi:10.1093/aje/kwf113

Bolton, J.L., Hayward, C., Direk, N., Lewis, J.G., Hammond, G.L., Hill, L.A., Anderson, A., Huffman,

J., Wilson, J.F., Campbell, H., Rudan, I., Wright, A., Hastie, N., Wild, S.H., Velders, F.P.,

Hofman, A., Uitterlinden, A.G., Lahti, J., Räikkönen, K., Kajantie, E., Widen, E., Palotie, A.,

Eriksson, J.G., Kaakinen, M., Järvelin, M.-R., Timpson, N.J., Davey Smith, G., Ring, S.M.,

Evans, D.M., St Pourcain, B., Tanaka, T., Milaneschi, Y., Bandinelli, S., Ferrucci, L., van der

Harst, P., Rosmalen, J.G.M., Bakker, S.J.L., Verweij, N., Dullaart, R.P.F., Mahajan, A.,

Lindgren, C.M., Morris, A., Lind, L., Ingelsson, E., Anderson, L.N., Pennell, C.E., Lye, S.J.,

Matthews, S.G., Eriksson, J., Mellstrom, D., Ohlsson, C., Price, J.F., Strachan, M.W.J.,

Reynolds, R.M., Tiemeier, H., Walker, B.R., 2014. Genome wide association identifies

common variants at the SERPINA6/SERPINA1 locus influencing plasma cortisol and

corticosteroid binding globulin. PLoS Genet. 10, e1004474. doi:10.1371/journal.pgen.1004474

Boomsma, D.I., Geus, E.J.C. De, Vink, J.M., Stubbe, J.H., Distel, M.A., Hottenga, J., Posthuma,

D., Beijsterveldt, T.C.E.M. Van, Hudziak, J.J., 2006. Netherlands Twin Register : From Twins 

to Twin Families. Twin Res. Hum. Genet. 9, 849–857. doi:10.1375/twin.9.6.849

Bulik-Sullivan, B.K., Loh, P.-R., Finucane, H.K., Ripke, S., Yang, J., Consortium, S.W.G. of the P.G.,

Patterson, N., Daly, M.J., Price, A.L., Neale, B.M., 2015. LD Score regression distinguishes

confounding from polygenicity in genome-wide association studies. Nat Genet advance on,

291–295. doi:10.1038/ng.3211

Dekker, M.J.H.J., Koper, J.W., Van Aken, M.O., Pols, H. a P., Hofman, A., De Jong, F.H.,

Kirschbaum, C., Witteman, J.C.M., Lamberts, S.W.J., Tiemeier, H., 2008. Salivary cortisol is

related to atherosclerosis of carotid arteries. J. Clin. Endocrinol. Metab. 93, 3741–3747.

doi:10.1210/jc.2008-0496

Elder, G.J., Ellis, J.G., Barclay, N.L., Wetherell, M.A., 2016. Assessing the daily stability of the

cortisol awakening response in a controlled environment. BMC Psychol. 4, 3.

doi:10.1186/s40359-016-0107-6



25

Fischer, S., Strawbridge, R., Herane Vives, A., Cleare, A.J., 2016. Cortisol as a predictor of

psychological therapy response in depressive disorders: systematic review and meta-

analysis. Br. J. Psychiatry. doi:10.1192/bjp.bp.115.180653

Froehlich, J.C., Zink, R.W., Li, T.K., Christian, J.C., 2000. Analysis of heritability of hormonal

responses to alcohol in twins: beta-endorphin as a potential biomarker of genetic risk for

alcoholism. Alcohol. Clin. Exp. Res. 24, 265–77.

Girshkin, L., Matheson, S.L., Shepherd, A.M., Green, M.J., 2014. Morning cortisol levels in

schizophrenia and bipolar disorder: A meta-analysis. Psychoneuroendocrinology 49, 187–206.

doi:10.1016/j.psyneuen.2014.07.013

Golden, S.H., Wand, G.S., Malhotra, S., Kamel, I., Horton, K., 2011. Reliability of hypothalamic-

pituitary-adrenal axis assessment methods for use in population-based studies. Eur. J.

Epidemiol. 26, 511–525. doi:10.1007/s10654-011-9585-2

Gozansky, W.S., Lynn, J.S., Laudenslager, M.L., Kohrt, W.M., 2005. Salivary cortisol determined by

enzyme immunoassay is preferable to serum total cortisol for assessment of dynamic

hypothalamic-pituitary-adrenal axis activity. Clin. Endocrinol. (Oxf). 63, 336–341.

doi:10.1111/j.1365-2265.2005.02349.x

GTEx-Portal, 2017. GTEx Portal [WWW Document]. URL https://www.gtexportal.org/home/

(accessed 5.11.17).

Hofman, A., Brusselle, G.G.O., Murad, S.D., van Duijn, C.M., Franco, O.H., Goedegebure, A.,

Ikram, M.A., Klaver, C.C.W., Nijsten, T.E.C., Peeters, R.P., Stricker, B.H.C., Tiemeier, H.W.,

Uitterlinden, A.G., Vernooij, M.W., 2015. The Rotterdam Study: 2016 objectives and design

update. Eur. J. Epidemiol. 30, 661–708. doi:10.1007/s10654-015-0082-x

Huising, M.O., Metz, J.R., van Schooten, C., Taverne-Thiele, A.J., Hermsen, T., Verburg-van

Kemenade, B.M.L., Flik, G., 2004. Structural characterisation of a cyprinid (Cyprinus carpio L.)

CRH, CRH-BP and CRH-R1, and the role of these proteins in the acute stress response. J.

Mol. Endocrinol. 32, 627–648. doi:10.1677/jme.0.0320627

Huisman, M., Oldehinkel, A.J., de Winter, A., Minderaa, R.B., de Bildt, A., Huizink, A.C., Verhulst,

F.C., Ormel, J., 2008. Cohort profile: The Dutch TRacking Adolescents Individual Lives

Survey; TRAILS. Int. J. Epidemiol. 37, 1227–1235. doi:10.1093/ije/dym273

Inglis, G.C., Ingram, M.C., Holloway, C.D., Swan, L., Birnie, D., Hillis, W.S., Davies, E., Fraser, R.,

Connell, J.M.C., 1999. Familial pattern of corticosteroids and their metabolism in adult human

subjects - The Scottish adult twin study. J. Clin. Endocrinol. Metab. 84, 4132–4137.

Kudielka, B.M., Hellhammer, D.H., Wüst, S., 2009. Why do we respond so differently? Reviewing

determinants of human salivary cortisol responses to challenge. Psychoneuroendocrinology

34, 2–18. doi:10.1016/j.psyneuen.2008.10.004

Lonsdale, J., Thomas, J., Salvatore, M., Phillips, R., Lo, E., Shad, S., Hasz, R., Walters, G., Garcia,

F., Young, N., others, 2013. The genotype-tissue expression (GTEx) project. Nat. Genet. 45,

580–585.

Meikle, a W., Stringham, J.D., Woodward, M.G., Bishop, D.T., 1988. Heritability of variation of

plasma cortisol levels. Metabolism. 37, 514–7.



26

Noppe, G., de Rijke, Y.B., Dorst, K., van den Akker, E.L.T., van Rossum, E.F.C., 2015. LC-MS/MS

based method for long-term steroid profiling in human scalp hair. Clin. Endocrinol. (Oxf). 83,

162–166. doi:10.1111/cen.12781

Penninx, B.W.J.H., Beekman, A.T.F., Smit, J.H., Zitman, F.G., Nolen, W.A., Spinhoven, P., Cuijpers,

P., De Jong, P.J., Van Marwijk, H.W.J., Assendelft, W.J.J., van der Meer, K., Verhaak, P.,

Wensing, M., de Graaf, R., Hoogendijk, W.J., Ormel, J., van Dyck, R., 2008. The Netherlands

Study of Depression and Anxiety (NESDA): Rationale, objectives and methods. Int. J.

Methods Psychiatr. Res. 17, 121–140. doi:10.1002/mpr.256

Power, C., Li, L., Atherton, K., Hertzman, C., 2011. Psychological health throughout life and adult

cortisol patterns at age 45y. Psychoneuroendocrinology 36, 87–97.

doi:10.1016/j.psyneuen.2010.06.010

Power, C., Li, L., Hertzman, C., 2006. Associations of early growth and adult adiposity with patterns

of salivary cortisol in adulthood. J. Clin. Endocrinol. Metab. 91, 4264–4270.

doi:10.1210/jc.2006-0625

Power, C., Thomas, C., Li, L., Hertzman, C., 2012. Childhood psychosocial adversity and adult

cortisol patterns. Br. J. Psychiatry 201, 199–206. doi:10.1192/bjp.bp.111.096032

Pruim, R.J., Welch, R.P., Sanna, S., Teslovich, T.M., Chines, P.S., Gliedt, T.P., Boehnke, M.,

Abecasis, G.R., Willer, C.J., Frishman, D., 2011. LocusZoom: Regional visualization of

genome-wide association scan results. Bioinformatics 27, 2336–2337.

doi:10.1093/bioinformatics/btq419

R Core Team, 2015. R: A Language and Environment for Statistical Computing.

Restituto, P., Galofré, J.C., Gil, M.J., Mugueta, C., Santos, S., Monreal, J.I., Varo, N., 2008.

Advantage of salivary cortisol measurements in the diagnosis of glucocorticoid related

disorders. Clin. Biochem. 41, 688–692. doi:10.1016/j.clinbiochem.2008.01.015

Rippe, R.C.A., Noppe, G., Windhorst, D.A., Tiemeier, H., van Rossum, E.F.C., Jaddoe, V.W.V.,

Verhulst, F.C., Bakermans-Kranenburg, M.J., van IJzendoorn, M.H., van den Akker, E.L.T.,

2015. Splitting hair for cortisol? Associations of socio-economic status, ethnicity, hair color,

gender and other child characteristics with hair cortisol and cortisone.

Psychoneuroendocrinology 66, 56–64. doi:10.1016/j.psyneuen.2015.12.016

Ross, K.M., Murphy, M.L.M., Adam, E.K., Chen, E., Miller, G.E., 2014. How stable are diurnal

cortisol activity indices in healthy individuals? Evidence from three multi-wave studies.

Psychoneuroendocrinology 39, 184–93. doi:10.1016/j.psyneuen.2013.09.016

Ruttle, P.L., Javaras, K.N., Klein, M.H., Armstrong, J.M., Burk, L.R., Essex, M.J., 2013. Concurrent

and longitudinal associations between diurnal cortisol and body mass index across

adolescence. J. Adolesc. Heal. 52, 731–737. doi:10.1016/j.jadohealth.2012.11.013

Shirtcliff, E. a., Allison, A.L., Armstrong, J.M., Slattery, M.J., Kalin, N.H., Essex, M.J., 2012.

Longitudinal stability and developmental properties of salivary cortisol levels and circadian

rhythms from childhood to adolescence. Dev. Psychobiol. 54, 493–502.

doi:10.1002/dev.20607



27

The 1000 Genomes Project Consortium, 2015. A global reference for human genetic variation.

Nature 526, 68–74. doi:10.1038/nature15393

Turner, S.D., 2014. qqman: an R package for visualizing GWAS results using QQ and manhattan

plots. bioRxiv 5165.

Visscher, P.M., Hemani, G., Vinkhuyzen, A.A.E., Chen, G.-B., Lee, S.H., Wray, N.R., Goddard,

M.E., Yang, J., 2014. Statistical power to detect genetic (co)variance of complex traits using

SNP data in unrelated samples. PLoS Genet. 10, e1004269.

doi:10.1371/journal.pgen.1004269

Walker, B.R., 2007. Glucocorticoids and cardiovascular disease. Eur. J. Endocrinol. 157, 545–559.

doi:10.1530/EJE-07-0455

West, D.W.D., Phillips, S.M., 2012. Associations of exercise-induced hormone profiles and gains in

strength and hypertrophy in a large cohort after weight training. Eur. J. Appl. Physiol. 112,

2693–702. doi:10.1007/s00421-011-2246-z

Willer, C.J., Li, Y., Abecasis, G.R., 2010. METAL: Fast and efficient meta-analysis of genomewide

association scans. Bioinformatics 26, 2190–2191. doi:10.1093/bioinformatics/btq340

Wüst, S., Federenko, I., Hellhammer, D.H., Kirschbaum, C., 2000. Genetic factors, perceived

chronic stress, and the free cortisol response to awakening. Psychoneuroendocrinology 25,

707–720. doi:10.1016/S0306-4530(00)00021-4

Yang, J., Lee, S., Goddard, M., Visscher, P., 2011. GCTA: A Tool for Genome-wide Complex Trait

Analysis. Am. J. Hum. Genet. 88, 76–82. doi:DOI 10.1016/j.ajhg.2010.11.011

Yehuda, R., Seckl, J., 2011. Minireview: Stress-Related Psychiatric Disorders with Low Cortisol

Levels: A Metabolic Hypothesis. Endocrinology 152, 4496–4503. doi:10.1210/en.2011-1218

Young, E., Abelson, J., Lightman, S., 2004. Cortisol pulsatility and its role in stress regulation and

health. Front. Neuroendocrinol. 25, 69–76. doi:10.1016/j.yfrne.2004.07.001

Zuk, O., Hechter, E., Sunyaev, S.R., Lander, E.S., 2012. The mystery of missing heritability:

Genetic interactions create phantom heritability. Proc. Natl. Acad. Sci. U. S. A. 109, 1193–8.

doi:10.1073/pnas.1119675109







0

2

4

6

8

10

−
lo

g 1
0(

p−
va

lu
e)

0

20

40

60

80

100

R
ecom

bination rate (cM
/M

b)

●

●●

●●●●

●

●●●

●●

●●

●●

●●

●●

●
●●

●

●

●●●●● ●●●

●

●●

●

●●●●●●●●●●●●●●●

●
●

●

rs1170109

0.2

0.4

0.6

0.8

r2

KIAA0564 DGKH AKAP11 TNFSF11

41.4 41.6 41.8 42
Position on chr13 (Mb)

Plotted SNPs


