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Abstract	24	

Recurrence	of	meningitis	due	to	Cryptococcus	neoformans	after	treatment	causes	25	

substantial	mortality	in	HIV/AIDS	patients	across	sub-Saharan	Africa.	In	order	to	26	

determine	whether	recurrence	occurred	due	to	relapse	of	the	original	infecting	isolate	27	

or	reinfection	with	a	different	isolate	weeks	or	months	after	initial	treatment,	we	used	28	

whole-genome	sequencing	to	assess	the	genetic	basis	of	infection	in	17	HIV-infected	29	

individuals	with	recurrent	cryptococcal	meningitis.	Comparisons	revealed	a	clonal	30	

relationship	for	15	pairs	of	isolates	recovered	before	and	after	recurrence	showing	31	

relapse	of	the	original	infection.	The	two	remaining	pairs	showed	high	levels	of	genetic	32	

heterogeneity;	in	one	pair	we	found	this	to	be	a	result	of	infection	by	mixed	genotypes,	33	

whilst	the	second	was	a	result	of	nonsense	mutations	in	the	gene	encoding	the	DNA	34	

mismatch	repair	proteins	MSH2,	MSH5	and	RAD5.	These	nonsense	mutations	led	to	a	35	

hypermutator	state,	leading	to	dramatically	elevated	rates	of	synonymous	and	non-36	

synonymous	substitutions.	Hypermutator	phenotypes	owing	to	nonsense	mutations	in	37	

these	genes	have	not	previously	been	reported	in	C.	neoformans	and	represent	a	novel	38	



	 3	

pathway	for	rapid	within-host	adaptation	and	evolution	of	resistance	to	first-line	39	

antifungal	drugs.	40	

Introduction	41	

The	HIV/AIDS	pandemic	has	led	to	a	large	population	of	profoundly	42	

immunocompromised	individuals	that	are	vulnerable	to	infection	by	the	opportunistic	43	

fungus	pathogen	Cryptococcus	neoformans	(Hagen	et	al.	2015).		This	mycosis	poses	a	44	

considerable	public	health	problem	in	sub-Saharan	Africa,	which	has	the	highest	45	

estimated	annual	incidence	of	cryptococcal	meningitis	(CM)	globally	(Park	et	al.	2009),	46	

with	the	majority	of	infections	caused	by	Cryptococcus	neoformans	sensu	stricto	47	

(previously	referred	to	as	Cryptococcus	neoformans	var.	grubii)	(Jarvis	&	Harrison	2007).	48	

Standard	treatment	for	HIV-associated	CM	includes	the	long-term	use	of	azole	drugs	49	

such	as	fluconazole,	following	initial	1-2	week	induction	treatment	with	amphotericin	B,	50	

which	is	often	not	available	(Brouwer	et	al.	2004).		Microevolution	occurs	in	response	to	51	

drug	pressure,	leading	to	resistance,	a	phenomenon	previously	described	in	C.	52	

neoformans	(Ormerod	et	al.	2013;	Sionov	et	al.	2010).		Patients	who	appear	successfully	53	

treated	(evidenced	by	symptom	resolution	and	sterilisation	of	cerebral	spinal	fluid	(CSF))	54	

can	relapse	due	to	persisting	infections,	which	in	some	cases	appear	to	have	evolved	55	

resistance	to	firstline	antifungal	drugs.		In	the	absence	of	continued	antifungal	therapy	56	

and	restoration	of	their	immune	system	through	antiretroviral	therapy	(ART),	patients	57	

with	HIV/AIDS	also	have	a	high	probability	of	recurrence	of	CM	(Bozzette	et	al.	1991).		58	
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Various	methods	of	within-host	evolution	are	available	to	eukaryotic	pathogens,	most	59	

notably	sexual	and	parasexual	reproduction,	although	these	are	difficult	to	observe	due	60	

to	the	often	cryptic	nature	recombination	of	fungi.		Aneuploidy,	recombination	in	the	61	

telomeres,	and	mutator	states	(Rodero	et	al.	2003)	also	provide	means	of	rapid	within-62	

host	evolution,	with	other	mechanisms	still	likely	to	be	discovered.		The	accumulation	of	63	

SNPs	alongside	copy	number	variation	and	aneuploidy	has	been	witnessed	during	64	

infection	in	different	fungal	pathogen	species,	enabling	rapid	adaptive	evolution	(Calo	et	65	

al.	2013)	and	conferring	resistance	to	antifungal	dugs	(Hickman	et	al.	2015).		Candidiasis	66	

is	caused	by	numerous	Candida	species,	yet	within-host	evolution	amongst	these	67	

species	differs.		Infectious	strains	of	Candida	albicans	are	usually	susceptible	to	azole	68	

antifungal	drugs,	but	resistance	can	evolve	via	the	evolution	of	drug-resistant	aneuploid	69	

isolates,	which	contain	an	isochromosome	of	the	left	arm	of	chromosome	5	(Selmecki	et	70	

al.	2009).		The	left	arm	of	chromosome	5	contains	two	important	genes	involved	in	71	

resistance	to	antifungals:	ERG11,	a	target	of	azoles,	and	TAC1,	a	transcription	factor	that	72	

activates	drug	efflux	pump	expression.		Conversely,	Candida	glabrata	are	intrinsically	73	

poorly	susceptible	to	azoles,	and	have	more	recently	evolved	multi-drug	resistance	to	74	

both	azoles	and	echinocandins	(Pfaller	2012;	Panackal	et	al.	2006;	Alexander	et	al.	2013).		75	

The	occurrence	of	within-host	diversity	and	recombination	has	been	witnessed	in	76	

eukaryotic	pathogens,	notably	C.	albicans:	mutation	and	recombination	rates	can	be	77	

increased	under	stressful	conditions,	such	as	drug	treatment	(Forche	et	al.	2009;	Ford	et	78	

al.	2015),	resulting	in	loss-of-heterozygosity	(LOH)	and	aneuploidy	(Forche	et	al.	2009).		79	

These	genetic	alterations	contribute	to	the	maintenance	of	a	population	of	C.	albicans	80	
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within	the	host	environment	(Forche	et	al.	2009),	and	drug	pressure	can	result	in	81	

diverging	levels	of	fitness	(Cowen	et	al.	2001).		82	

Similar	responses	to	antifungal	drugs	have	been	observed	in	C.	neoformans;		Point	83	

mutations	in	the		ortholog	ERG11	were	also	shown	to	confer	fluconazole	resistance,	by	84	

causing	the	amino	acid	substitution	G484S	(Rodero	et	al.	2003).		Sionov	et	al.	(Sionov	et	85	

al.	2010)	demonstrated	large	scale	chromosomal	duplications	(primarily	chromosome	1)	86	

are	fundamental	to	overcoming	fluconazole	(FLC)	drug	pressure	in	a	mouse	model,	87	

contributing	to	failure	of	FLC	therapy.		The	duplication	of	chromosome	1	included	88	

increased	copy	number	of	genes	ERG11,	the	target	of	FLC,	and	AFR1,	a	transporter	of	89	

azoles	(Sionov	et	al.	2010),	although	other	genes	are	also	thought	to	be	involved	in	FLC	90	

resistance	(Sionov	et	al.	2013;	Paul	et	al.	2015).	Previous	studies	of	serially	collected	C.	91	

neoformans	isolates	have	confirmed	in-host	microevolution,	including	the	occurrence	of	92	

large-scale	genomic	rearrangements	(Fraser	et	al.	2005;	Blasi	et	al.	2001;	Illnait-Zaragozi	93	

et	al.	2010).		Like	C.	albicans,	the	C.	neoformans	genome	is	capable	of	undergoing	94	

chromosomal	duplication	and	loss	under	stresses	such	as	drug	pressure	or	invasion	of	95	

the	human	host	(Fries	et	al.	1996).		These	chromosomal	duplications	are	often	lost	when	96	

the	selective	pressure	is	removed	(Sionov	et	al.	2010).		97	

The	development	of	mutator	states	via	hypermutability	is	a	rapidly	expanding	area	of	98	

study	in	bacteria,	particularly	Pseudomonas	aeruginosa	in	cystic	fibrosis	(CF)	patients.		99	

Here,	hypermutability	has	been	shown	to	have	an	association	with	antimicrobial	100	

resistance	(Oliver	et	al.	2000;	Maciá	et	al.	2005),	causing	significant	implications	in	the	101	
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early	treatment	of	cystic	fibrosis	patients	to	prevent	chronic	infection	(Burns	et	al.	2001;	102	

Maciá	et	al.	2005).		Few	studies	have	explored	hypermutation	in	pathogenic	fungi;	103	

however,	mutations	in	the	yeast	Saccharomyces	cerevisiae	genes	PMS1,	MLH1	and	104	

MSH2,	which	are	all	involved	in	mismatch	repair,	have	been	shown	to	lead	to	100-	to	105	

700-	fold	increases	in	mutations	throughout	the	genome	(Strand	et	al.	1993).		106	

Frameshift	mutations	in	an	ortholog	of	the	mismatch	repair	gene	MSH2	have	also	been	107	

shown	to	contribute	to	microevolution	in	the	sister	species	of	C.	neoformans,	108	

Cryptococcus	gattii	(Billmyre	et	al.	2014).	109	

Here	we	describe	a	comparative	genome-sequencing	based	approach	to	investigate	110	

microevolution	in	serially	collected	isolates	of	C.	neoformans.		These	isolates	were	111	

grown	and	stored	from	fresh	CSF	of	patients	with	CM,	prior	to	starting	and	during	112	

antifungal	therapy	using	induction	with	amphotericin	B-based	regimens,	followed	by	113	

fluconazole.		We	used	whole-genome	sequencing	to	describe	the	nature	of	infection	in	114	

17	patients	to	gain	insights	into	the	dynamics	of	recurrent	infections.			115	

Materials	and	Methods	116	

Samples	and	patients	117	

Sixteen	South	African	patients	and	one	Ugandan	patient	demonstrating	clinical	evidence	118	

of	cryptococcal	meningitis	were	studied.		All	patients	were	either	part	of	observational	119	

studies	or	clinical	trial	(Bicanic	et	al.	2007;	Bicanic	et	al.	2008;	Jarvis	et	al.	2012;	Longley	120	

et	al.	2008;	Jarvis	et	al.	2010).		Ethical	approval	was	obtained	from	the	Wandsworth	121	

Research	Ethics	Committee	covering	St.	George’s	University	of	London	(Longley	et	al.	122	
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2008;	Bicanic	et	al.	2007;	Bicanic	et	al.	2008;	Jarvis	et	al.	2012).		In	South	Africa	123	

additional	ethical	approval	was	obtained	from	the	University	of	Cape	Town	Research	124	

Ethics	Committee;	in	Uganda,	from	the	Research	Ethics	Committee	of	Mbarara	125	

University	of	Science	and	Technology.		All	patients	initially	presented	with	cryptococcal	126	

meningitis	and	were	treated	using	induction	therapy	with	7-14	days’	amphotericin	B	127	

deoxycholate	0.7-1	mg/kg/d,	with	or	without	100	mg/kg/d	of	flucytosine	(with	one	128	

patient,	IFNR63,	also	receiving	adjunctive	interferon	gamma),	followed	by	fluconazole	129	

consolidation	at	400	mg/d	for	8	weeks	and	maintenance	therapy	at	200	mg/d	for	6-12	130	

months	(n	=	16	pairs),	until	immune	restoration	on	ART	with	a	CD4	count	of	>200	131	

cells/µL.		The	single	patient	in	Uganda	received	induction	therapy	with	fluconazole	1600	132	

mg/d	for	2	weeks	followed	by	fluconazole	consolidation	and	maintenance	and	ART,	as	133	

above	(n	=	1	pair).		As	part	of	study	procedure,	patients	enrolled	in	clinical	trials	had	134	

quantitative	cryptococcal	cultures	performed	on	serial	CSF	samples.		Patients	with	a	135	

recurrence	of	their	cryptococcal	disease	following	initial	treatment	and	positive	CSF	136	

culture	for	Cryptococcus	at	the	time	of	disease	recurrence	were	included	in	the	study.		137	

We	studied	the	clinical	cryptococcal	isolates	taken	on	initial	diagnosis	(prior	to	initiation	138	

of	treatment)	and	compared	each	with	the	Cryptococcus	isolated	from	CSF	on	139	

recurrence	of	disease	in	the	same	patient	(Table	1).	140	

Multi-locus	sequence	typing	141	

To	discern	whether	mixed	or	single	genotype	infections	were	extracted	from	CSF,	multi-142	

locus	sequence	typing	(MLST)	was	performed	on	three	independent	colonies	for	a	143	
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subset	of	the	study	isolates,	according	to	the	methods	outlines	in	Meyer	et	al.	(Meyer	et	144	

al.	2009),	with	modifications	as	outlined	in	Beale	et	al.	(Beale	et	al.	2015).	145	

Molecular	methods	146	

C.	neoformans	was	isolated	from	HIV	infected	individuals	on	location	by	plating	CSF	onto	147	

Sabourand	Dextrose	(SD)	agar	(Oxoid,	Fisher	Scientific),	and	growing	at	30˚C	for	48	148	

hours.		A	representative	sample	of	the	C.	neoformans	population	was	taken	by	selecting	149	

a	broad	‘sweep’	of	all	colonies	on	the	SD	agar	plate,	which	was	stored	in	150	

cryopreservative	medium	(80%	SD	broth,	20%	glycerol)	at	-80˚C	until	further	testing.		151	

This	approach	ensures	all	genetic	diversity	is	maintained	through	the	process,	and	single	152	

colony	picking	only	occurs	at	the	final	stage	of	liquid	culture	and	DNA	extraction.	153	

Frozen	stocks	were	plated	onto	SD	agar	and	cultured	for	72	hours.		A	single	colony	was	154	

inoculated	into	6ml	Yeast	Peptone	Digest	broth	(Oxoid)	supplemented	with	0.5M	NaCl	155	

and	cultured	at	37°C	with	agitation	(165	rpm)	for	40	hours,	followed	by	genomic	DNA	156	

extraction	using	the	Masterpure	Yeast	DNA	purification	kit	(Epicentre)	modified	by	157	

addition	of	two	cycles	of	rapid	bead	beating	(45	seconds	at	4.5	m/second)	using	a	158	

FastPrep	24	homogeniser	(MP	Bio).		Genomic	DNA	libraries	were	prepared	using	the	159	

TruSeq	DNA	v2	or	TruSeq	Nano	DNA	kit	(Illumina),	and	whole	genome	sequencing	was	160	

performed	on	an	Illumina	HiSeq	2500	at	Medical	Research	Council	Clinical	Genomics	161	

Centre		(Imperial	College	London)	as	previously	described	(Rhodes	et	al.	2014).			162	

Data	policy	163	
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All	raw	reads	and	information	on	lineages	of	isolates	in	this	study	have	been	submitted	164	

to	the	European	Nucleotide	Archive	under	the	project	accession	PRJEB11842.	165	

Whole	genome	sequence	analysis	166	

Raw	Illumina	reads	were	aligned	to	the	C.	neoformans	reference	genome	H99	(Loftus	et	167	

al.	2005)	using	the	Burrows-Wheeler	Aligner	(BWA)	v0.75a	mem	algorithm	(Li	2013)	168	

with	default	parameters	to	obtain	high	depth	alignments	(average	104x).		Samtools	(Li	169	

et	al.	2009)	version	1.2	was	used	to	sort	and	index	resulting	BAM	files,	and	generate	170	

statistics	regarding	the	quality	of	alignment.		Picard	version	1.72	was	used	to	identify	171	

duplicate	reads	and	assign	correct	read	groups	to	BAM	files.		Furthermore,	BAM	files	172	

were	locally	realigned	around	insertions	and	deletions	(INDELs)	using	GATK	(McKenna	et	173	

al.	2010)	version	3.4-46	‘RealignerTargetCreator’	and	‘IndelRealigner’,	following	best	174	

practice	guidelines	(Van	der	Auwera	et	al.	2013).		175	

Single	nucleotide	polymorphisms	(SNPs)	and	INDELs	were	called	from	all	alignments	176	

using	GATK	(McKenna	et	al.	2010)	version	3.4-46	‘HaplotypeCaller’	in	haploid	mode	with	177	

a	requirement	that	all	variants	called	and	emitted	are	above	a	phred-scale	confidence	178	

threshold	of	30.		Both	SNPs	and	INDELs	were	hard	filtered	due	to	a	lack	of	training	sets	179	

available	for	C.	neoformans	by	running	VariantFiltration	with	parameters	“DP	<	5	||	MQ	180	

<	40.0	||	QD	<	2.0	||	FS	>	60.0”;	this	expression	ensured	low	confidence	variants	were	181	

filtered	out	if	they	met	just	one	of	the	filter	expression	criteria.		Resulting	high-182	

confidence	variants	were	mapped	to	genes	using	VCF-annotator	(Broad	Institute,	183	
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Cambridge,	MA,	USA)	and	the	latest	release	(CNA3)	of	the	C.	neoformans	reference	184	

genome	H99	and	gene	ontology.			185	

Some	isolates	were	suspected	of	having	non-haploid	genomes	due	to	the	high	number	186	

of	low	confidence	variants.		For	these	isolates,	‘HaplotypeCaller’	was	repeated	in	diploid	187	

mode.	188	

The	average	(mean)	coverage	for	each	isolate	were	determined	using	GATK	(McKenna	189	

et	al.	2010)	version	3.4-46	‘DepthOfCoverage’	under	default	settings.		The	C.	190	

neoformans	H99	(Loftus	et	al.	2005)	was	again	used	as	reference.		In	order	to	determine	191	

aneuploidy,	whole-genome	coverage	data	was	normalised	and	regions	displaying	192	

normalised	coverage	equal	to	2	were	deemed	diploid	events	(likewise,	normalised	193	

coverage	equal	to	3	were	deemed	triploid	events,	and	so	on),	whereas	normalised	194	

coverage	equal	to	zero	was	deemed	a	deletion	event.	195	

Susceptibility	testing	196	

The	susceptibility	testing	of	all	relapse	isolates	were	performed	with	the	MICRONAUT-197	

AM	susceptibility	testing	system	for	yeast	(Merlin)	as	recommended	by	the	198	

manufacturer.	MICRONAUT-AM	allows	the	determination	of	MICs	of	amphotericin	B,	199	

flucytosine,	fluconazole,	voriconazole,	posaconazole,	itraconazole,	micafungin,	200	

anidulafungin	and	caspofungin,	and	commercialises	the	well-established,	but	laborious,	201	

CLSI	broth	microdilution	technique.		Briefly,	for	each	isolate	five	colonies	were	used	to	202	

prepare	a	0.5-McFarland-standard	suspension	in	0.9%	NaCl.	1:20	dilution	was	prepared	203	

in	0.9%	NaCl	and	1:5	dilution	was	prepared	in	11ml	RPMI	broth	provided	with	the	kit.	204	
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100µl	AST	indicator	and	50µl	Methylene	blue	solutions	were	mixed	with	the	broth	for	205	

manual	susceptibility	testing.		The	broth	was	then	inoculated	onto	Merlin	MICRONAUT	206	

96-well	testing	plates	(100ul/well)	and	incubated	at	30°C	for	72	hours.		The	lowest	207	

concentration	of	an	antifungal	agent	with	no	detectable	growth	(MIC)	was	determined	208	

for	each	isolate	based	on	fungal	growth	(pink)	or	no	growth	(blue).		Obtained	MICs	were	209	

interpreted	according	to	C.	albicans	EUCAST	(Vers.	7.0	/	12-08-2014)	values	(Rodríguez-210	

Tudela	et	al.	2010;	Alastruey-Izquierdo	&	Cuenca-Estrella	2012).	211	

Phylogenetic	analysis	212	

Whole-genome	SNPs	were	converted	into	relaxed	interleaved	Phylip	format.		Rapid	213	

bootstrap	phylogenetic	analysis	using	500	bootstrap	replicates	was	carried	out	on	62	214	

isolates	in	total	(Table	1)	using	RAxML-HPC	version	7.3.0	(Stamatakis	2006)	as	described	215	

in	Abdolrasouli	et	al.	(Abdolrasouli	et	al.	2015):	35	isolates	from	this	study	in	addition	to	216	

27	isolates	(‘non-study’)	were	included	to	show	the	phylogenetic	context	of	true	relapse	217	

infections.		These	non-study	isolates,	whilst	from	a	clinical	source,	were	not	recurrent	218	

isolates	and	were	not	isolated	as	part	of	the	clinical	trials	described	in	the	earlier	219	

Methods	section.		Resulting	phylogenies	were	visualised	in	FigTree	version	1.4.2	220	

(http://tree.bio.ed.ac.uk/software/figtree/).		The	same	process	was	completed	for	each	221	

chromosome	individually	for	all	62	isolates,	using	250	replicates	in	the	rapid	bootstrap	222	

analysis.					223	

Gene	Ontology	and	KEGG	pathway	analysis	224	
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Non-synonymous	(nsSNPs)	mutations	unique	to	each	timepoint	for	each	pair	were	225	

assessed	for	significantly	overrepresented	gene	ontology	(GO)	annotations	and	226	

metabolic	pathways.		Briefly,	genes	found	to	contain	a	nsSNP	mutation	were	227	

interrogated	for	overrepresented	Biological	Process	Ontology	in	the	C.	neoformans	H99	228	

database.		GO	terms	that	were	found	to	be	associated	with	genes	mapping	to	the	229	

InterPro	domain	database	were	transferred	to	GO	associations,	using	a	p-value	cut-off	230	

of	p	<	0.05.		For	metabolic	pathway	enrichment	in	genes	containing	nsSNPs,	genes	were	231	

interrogated	against	the	KEGG	(Kanehisa	et	al.	2016)	pathway	source	for	C.	neoformans	232	

H99,	using	a	p-value	cut-off	of	p	<	0.05.		233	

Identifying	sites	under	selection	234	

BayeScan	2.01	(Foll	&	Gaggiotti	2008)	uses	an	outlier	approach	to	identify	candidate	loci	235	

under	natural	selection.		The	method	uses	the	allele	frequencies	that	are	characteristic	236	

of	each	population	and	estimates	the	posterior	probabilities	of	a	given	locus	under	a	237	

model	that	includes	selection	and	a	neutral	model.		The	programme	then	determines	238	

whether	the	model	that	includes	selection	better	fits	the	data.		This	approach	allows	the	239	

simultaneous	assessment	of	the	influence	of	both	balancing	and	purifying	selection.		240	

Loci	under	balancing	selection	will	present	low	FST	values	whereas	high	FST	values	reflect	241	

patterns	of	local	adaptation	(purifying	selection)	(Excoffier	et	al.	2009).		Analysis	was	not	242	

undertaken	for	the	VNII	and	VNB	lineages	due	to	low	numbers	of	isolates,	which	would	243	

be	insufficient	to	overcome	the	strong	population	structure.		VNI	Isolates	at	day	0	were	244	

assigned	to	a	population	and	their	associated	relapse	isolates	constituted	the	second	245	
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population.		Analyses	were	conducted	using	the	standard	parameters	including	a	50,000	246	

burn	in	period	and	100,000	iterations.		Several	analyses	were	conducted	varying	the	247	

prior	odds	(from	10,	100	to	1,000)	for	the	neutral	model.	248	

Results	249	

Clinical	and	demographic	information	250	

The	study	included	paired	isolates	from	17	patients,	with	a	median	age	of	32	years	(IQR	251	

26-36)	and	median	CD4	count	at	CM	diagnosis	of	22	(IQR	9-71)	cells/µL.		Six	patients	252	

were	male,	9	were	female,	with	the	gender	of	two	patients	unrecorded.		The	median	253	

time	between	initial	and	recurrence	isolates	was	115	days	(minimum	55	days,	maximum	254	

409	days).		In	those	for	whom	ART	status	was	known,	2	of	16	(13%)	patients	were	255	

already	on	ART	at	the	initial	CM	episode;	6	out	of	15	(40%)	patients	had	not	started	ART	256	

prior	to	CM	recurrence.	257	

Detailed	clinical	notes	were	available	for	the	recurrent	CM	episode	in	7	patients:	two	258	

(CCTP52	and	RCT9)	had	not	attended	follow	up	and	never	started	ART	prior	to	admission	259	

with	recurrence	–	both	died	of	the	recurrent	CM.		One	patient	(CCTP32)	had	not	been	260	

taking	fluconazole	for	2	weeks	prior	to	recurrence.		In	four	patients	(CCTP27,	CCTP50,	261	

RCT24,	IFNR63)	who	were	adherent	to	both	ART	and	fluconazole	at	recurrence	were	262	

assessed	as	having	CM	immune	reconstitution	inflammatory	syndrome	(CM-IRIS).		263	

Sequencing	of	paired	samples	isolated	from	patients	infected	with	C.	neoformans	264	
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Prior	to	sequencing,	multiple	colonies	from	a	subset	of	isolates	included	in	this	study	265	

were	analysed	using	MLST	to	investigate	whether	a	mixed	infection	was	present	in	the	266	

original	CSF	extract.		The	results	show	that	mixed	infections	were	not	present	in	12	out	267	

of	17	Pairs	included	in	this	study.		One	Pair	(Pair	7)	was	only	tested	once,	and	allele	268	

types	(AT)	were	not	sufficient	to	conclude	whether	sequence	type	(ST)	100	or	196	was	269	

present	in	both	original	and	recurrent	isolate.		On	two	separate	attempts,	STs	for	Pairs	3	270	

and	17	could	not	be	determined,	reflecting	a	need	for	whole-genome	sequencing	(WGS)	271	

to	characterise	these	Pairs.		STs	for	Pairs	1	and	6	were	inconclusive,	and	suggestive	of	a	272	

mixed	infection	present.	273	

We	recovered	an	average	of	23.9	million	reads	from	each	isolate,	with	an	average	of	274	

98.8%	of	reads	mapped	to	the	C.	neoformans	H99	reference	genome	(Loftus	et	al.	2005),	275	

and	an	average	coverage	of	104	+/-31.2	(standard	deviation).		To	enable	comparative	276	

studies	and	detect	micro-evolutionary	changes,	precise	variant-calling	was	needed;	277	

variants	were	identified	and	false	positive	low-confidence	variants	were	filtered	out	to	278	

provide	a	set	of	high-confidence	SNPs	(see	Materials	and	Methods).		Full	alignment,	279	

coverage	and	variant	calling	statistics	are	provided	in	Supplementary	Materials	Table	5.		280	

Due	to	a	high	number	of	low-confidence	SNPs	filtered	out	in	some	isolates,	which	is	281	

suggestive	of	heterozygous	SNPs,	variant	calling	was	re-run	in	diploid	mode	(see	282	

Methods)	for	all	isolates	in	Pairs	3,	4,	5	and	17	(results	in	Supplementary	Materials	Table	283	

6).			284	
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A	high	level	of	diversity	was	observed	within	the	VNB	lineage,	resulting	in	long	branch	285	

lengths	amongst	isolates	within	this	clade	(Figure	1).		Although	all	VNB	isolates	were	286	

mapped	to	the	C.	neoformans	H99	reference	(Loftus	et	al.	2005),	which	is	a	VNI	lineage	287	

isolate,	we	do	not	believe	SNP	numbers	observed	in	the	VNB	lineage	are	inflated	by	the	288	

large	phylogenetic	distance	to	the	reference	genome.		This	is	because	SNP	289	

determination	revealed	only	21.6%	of	SNPs	that	we	discovered	were	shared	by	the	290	

three	VNB	Pairs	included	in	this	study	(Pairs	3,	12	and	17),	highlighting	the	large	291	

amounts	of	genetic	diversity	seen	within	this	lineage	as	we	have	previously	noted	(58).	292	

Phylogenetic	analysis	showed	that	of	the	17	pairs	of	relapse	isolates,	three	pairs	were	293	

lineage	VNB,	whilst	four	and	ten	belonged	to	lineages	VNII	and	VNI	respectively	(Figure	294	

1).	The	average	pairwise	SNP	diversity	was	far	higher	amongst	isolates	from	the	VNB	295	

lineage	(140,835	SNPs)	compared	to	isolates	in	the	VNI	(17,808	SNPs)	and	VNII	(938	296	

SNPs)	lineages,	showing	that	the	VNI	and	VNII	lineages	are	less	diverse	than	VNB	across	297	

our	cohort.	On	average,	isolates	of	the	VNB,	VNII	and	VNI	lineages	accumulated	365,	12	298	

and	3	unique	SNPs	per	day	between	the	time	of	the	original	isolation	and	the	recurrence	299	

of	infection.		Isolates	in	the	VNB	lineage	were	more	likely	to	experience	a	ploidy	event,	300	

with	an	average	of	1.6	changes	in	ploidy	per	isolate.		Less	than	one	isolate	in	the	VNII	301	

and	VNI	lineages	would,	on	average,	experience	ploidy	events	(0.375	and	0.26	302	

respectively).	303	

All	pairs,	with	the	exception	of	Pair	7,	were	isolated	from	patients	in	South	Africa;	Pair	7	304	

was	isolated	from	a	patient	in	Uganda.	We	classified	the	second	isolate	as	a	relapse	of	305	



	 16	

the	original	infection	if	more	than	97%	of	SNPs	were	in	common	between	original	and	306	

recurrent	isolates.		The	majority	of	pairs	had	>99%	SNP	similarity	(Table	2)	between	307	

original	and	recurrent	isolates,	with	Pairs	6,	7	and	14	displaying	97%,	98%	and	97%	308	

similarity	respectively.		Therefore,	all	pairs,	with	the	exception	of	Pairs	3	and	17	(SNP	309	

similarity	44%	and	56%)	could	be	classified	as	relapsed	infections	on	this	basis.		This	310	

confirms	previous	results	obtained	by	MLST,	and	that	the	original	and	recurrent	isolates	311	

sequenced	of	Pairs	1	and	7	(which	had	previously	demonstrated	a	potential	mixed	312	

infection)	were	indeed	true	relapse	infections.	313	

Within	the	VNB	pairs	(3,	12	and	17),	the	accumulation	of	SNPs	between	original	and	314	

recurrent	infection	varied	widely.	We	observed	178	and	304	SNPs/day	for	CCTP50-d257	315	

and	CCTP50-d409	respectively	(Pair	3),	8	SNPs/day	for	Pair	12,	and	968	SNPs/day	for	Pair	316	

17.		Due	to	the	variation	in	SNP	accumulation	between	Pair	12	and	Pairs	3	and	17,	we	317	

hypothesised	that	Pair	12	was	a	true	relapse	of	the	original	infection,	whilst	Pairs	3	and	318	

17	are	showing	inflated	SNP	numbers	due	to	reinfection	or	an	anomalous	rate	of	319	

evolution.		320	

Antifungal	susceptibility	testing	321	

Fluconazole	susceptibility	testing	(Table	1)	using	the	Etest®	(bioMerieux)	was	carried	out	322	

for	12	isolates	(including	three	paired	isolates)	in	this	study	by	the	accredited	central	323	

Microbiology	laboratory	in	Cape	Town	at	the	time	of	the	clinical	episode;	five	of	these	324	

(CCTP27-d121	in	Pair	1;	CCTP50	and	CCTP50-d257	in	Pair	3;	RCT24-d154	in	Pair6;	325	

IFNR11-d203	in	Pair	15)	had	MICs	above	the	established	epidemiological	cut-off	value	(≥	326	
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8μg/ml)	for	fluconazole	(FLC).		All	pairs	were	retested	following	5-10	years	frozen	327	

storage	in	glycerol	using	the	MICRONAUT-AM	system	for	yeast	susceptibility	(Methods):	328	

all	were	found	to	be	sensitive	to	FLC.	329	

The	fourfold	increase	in	FLC	MIC	observed	in	Pairs	1	and	3	initial	and	recurrent	330	

infections	provide	a	sound	basis	for	relapse	of	infection	due	to	drug	resistance:		in	Pair	1	331	

(patient	CCTP27),	the	initial	isolate	had	a	susceptible	FLC	MIC	of	4	ug/ml,	whilst	the	332	

recurrent	isolate	was	resistant	at	an	MIC	of	64	ug/ml;	in	Pair	3	(CCTP50),	the	initial	333	

isolate	MIC	was	16	ug/ml	(intermediate),	whilst	a	highly	resistant	MIC	of	256	ug/ml	was	334	

found	on	recurrence	at	day	257.	335	

Serial	isolates	share	a	recent	common	ancestor,	suggesting	relapse	of	infection	336	

To	investigate	whether	the	C.	neoformans	isolated	from	the	same	patient	were	relapse	337	

infection	of	the	original	isolate,	or	infection	with	a	new	isolate,	we	undertook	338	

phylogenetic	analyses	to	determine	their	relationships.	339	

As	described	above,	the	high	level	of	common	SNPs,	and	subsequent	low	level	of	unique	340	

SNPs,	between	recurrent	isolates	indicated	that	all	pairs,	with	the	exception	of	Pairs	3	341	

and	17,	were	relapse	of	the	original	infections	(Table	2).		Phylogenetic	analysis	(Figure	1)	342	

confirmed	that	all	pairs	(excepting	Pairs	3	and	17)	clustered	together	with	short	branch	343	

lengths,	confirming	the	low	level	of	divergence	between	original	and	recurrent	isolates,	344	

thus	confirming	that	they	were	relapse	of	the	original	infections.	However,	only	46%	and	345	

56%	of	SNPs	were	found	to	be	in	common	between	initial	and	relapse	infection	in	Pairs	346	

3	and	17	respectively	(Figure	1	and	Table	2).		These	VNB	pairs	(Pair	3;	CCTP50,	CCTP50-347	
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d257	and	CCTP50-d409	and	Pair	17;	IFNR23	and	IFNR23-d179)	showed	markedly	longer	348	

branch	lengths,	suggesting	either	reinfection	or	elevated	rates	of	within-host	evolution.		349	

Further	analysis	was	undertaken	to	confirm	or	refute	that	reinfection	by	a	different	350	

isolate	was	responsible	for	Pairs	3	and	17.		Phylogenetic	analysis	for	all	isolates	included	351	

in	Figure	1	were	repeated	for	each	of	the	14	C.	neoformans	chromosomes	individually	352	

(Supplementary	Figure	1).	353	

Phylogenetic	analysis	of	Pair	3	showed	that	the	original	infecting	genotype	of	CCTP50	354	

was	highly	related	to	the	isolate	IFN26	(not	included	in	this	study,	but	included	in	the	355	

phylogeny	to	assist	with	defining	lineages	-	see	Materials	and	Methods).		All	three	356	

genotypes	from	Pair	3	were	found	to	be	phylogenetically	clustered	together,	but	with	357	

long	branches	(Figure	1).	Chromosome-by-chromosome	analysis	indicated	that	Pair	3	358	

serially	isolated	genotypes	displayed	differing	relationships	for	each	chromosome,	and	359	

all	three	serial	genotypes	were	clustered	together	only	in	the	phylogeny	for	360	

chromosome	1	(Supplementary	Figure	1).		All	three	genotypes	were	phylogenetically	361	

similar	for	three	other	chromosomes,	however	long	branches	and	clustering	with	362	

additional	non-study	isolates	suggested	differing	evolutionary	relationships.		The	three	363	

serially	isolated	genotypes	of	Pair	3	were	completely	phylogenetically	dissimilar	in	three	364	

chromosomes;	the	remaining	chromosomes	saw	either	the	day	1	isolate	(CCTP50)	and	365	

day	409	isolate	(CCTP50-d409),	or	the	day	257	isolate	(CCTP50-d257)	and	day	409	366	

isolate	(CCTP50-d409)	phylogenetically	more	related.	367	
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Pair	17	isolates	(ID	IFNR23)	clustered	together	in	only	two	of	the	14	chromosomal	368	

phylogenies	explored	(Chromosomes	10	and	12);	in	the	remaining	chromosomal	369	

phylogenies,	the	Pair	17	isolates	either	displayed	a	close	phylogenetic	relationship,	but	370	

with	long	branches	(6	chromosomes),	or	were	phylogenetically	distinct	from	one	371	

another,	and	were	more	phylogenetically	related	with	other	study	or	additional	isolates	372	

(6	chromosomes).	373	

Microevolution	within	the	human	host	374	

Our	data	present	a	unique	opportunity	to	observe	microevolution	of	all	three	lineages	of	375	

C.	neoformans	in	the	human	host.		Although	multiple	factors	determine	evolutionary	376	

rates,	identifying	non-synonymous	SNPs	(nsSNPs)	that	cause	amino	acid	change	is	a	377	

standard	method	for	inferring	genetic	diversity	and	observing	natural	selection	on	378	

codons.	379	

Less	than	3%	of	nsSNPs	were	unique	to	recurrent	isolates	in	all	pairs,	further	suggesting	380	

that	all	pairs	are	relapse	of	the	original	infection,	with	the	exception	of	the	VNB	Pairs	3	381	

and	17	(15.2%	and	59.8%	of	all	nsSNPs	are	unique,	respectively).			382	

SNPs	unique	to	each	timepoint	for	each	pair	were	identified.		All	SNPs	at	Day	1	in	all	383	

pairs,	and	all	SNPs	at	time	of	isolate	of	recurrent	infection	in	all	pairs,	were	compared.		384	

No	SNPs	were	found	to	be	common	to	all	17	pairs	at	either	Day	1	or	at	point	of	385	

recurrent	infection;	however,	there	were	VNII	and	VNB	lineage-specific,	and	timepoint-386	

specific,	common	SNPs.			387	
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Five	SNPs,	all	intergenic,	were	found	to	be	common	at	Day	1,	along	with	five	different	388	

SNPs,	also	intergenic,	within	VNB	pairs	(Pairs	3,	12	and	17).		Three	intergenic	SNPs	were	389	

common	to	all	VNII	pairs	(Pairs	2,	4,	5	and	9)	at	timepoint	Day	1,	whilst	14	SNPs	were	390	

common	to	all	VNII	pairs	at	the	point	of	recurrent	infection,	five	of	which	were	391	

intergenic.		The	remaining	9	SNPs	were	located	in	the	5’	untranslated	region	(UTR)	gene	392	

SMF1	(CNAG_05640),	a	metal	ion	transporter	with	a	natural	resistance-associated	393	

macrophage	protein.		Selection	analysis	indicated	that	this	gene	was	not	under	selection	394	

pressure,	however.	395	

To	evaluate	the	genetic	divergence,	Wright’s	fixation	indexes	(FST)	were	calculated	to	396	

identify	SNPs	under	selection	in	VNI	original	and	recurrent	infection	populations	397	

investigating	96,856	loci	(see	Methods).	No	putative	loci	under	either	diversifying	or	398	

balancing	selection	could	be	detected	using	a	false	discovery	rate	(FDR)	of	0.05.	FST	399	

values	were	limited	to	not	exceed	3.47x10-5.		400	

Aneuploidy	as	a	generator	of	diversity	in	recurrent	infection	401	

Normalised	whole-genome	coverage	was	plotted	to	observe	possible	aneuploidy	402	

(increase	or	decrease	in	copies	of	chromosomes)	and	copy	number	variation	(CNV)	403	

events.		Aneuploidy	events	were	observed	in	7	genome	pairs,	suggesting	either	404	

interspersed	or	tandem	duplications	of	large	segments	of	the	genome.	405	

Ormerod	et	al.	(Ormerod	et	al.	2013)	previously	published	a	study	showing	relapse	406	

isolates	exhibiting	aneuploidies	of	chromosome	12.		We	observed	aneuploidy	of	407	

chromosome	12	in	four	pairs	(Pairs	1,	5,	10	and	14)	included	in	this	study.		The	408	
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aneuploidy	spanned	different	regions	of	chromosome	12	in	all	pairs,	but	all	aneuploidies	409	

were	present	in	the	right	arm	of	the	chromosome:	in	Pair	5	the	aneuploidy	was	410	

restricted	to	392	kbp	of	one	chromosome	arm;	in	Pair	1,	the	aneuploidy	spanned	an	411	

entire	arm	of	chromosome	12	(603	kbp).		Pair	14	displayed	this	aneuploidy	in	both	the	412	

initial	and	recurrent	infection,	and	the	aneuploidy	spanned	the	whole	chromosome;	the	413	

recurrent	infection	isolate	of	Pair	10	also	displayed	aneuploidy	along	the	whole	414	

chromosome.		Evaluation	of	the	read	depth	along	chromosome	12	revealed	triplication	415	

of	the	chromosome	12	arm	in	the	Pair	1	recurrent	infection	isolate,	a	phenomenon	also	416	

seen	in	Ormerod	et	al.	(Ormerod	et	al.	2013).		Further	analysis	of	read	depth	in	the	Pair	417	

5	recurrent	isolate	revealed	a	diploid	genome,	and	chromosome	12	was	also	418	

experiencing	triploidy.		Current	annotation	of	the	C.	neoformans	H99	genome	reveals	419	

the	presence	of	327	genes	in	chromosome	12;	the	right	arm	of	chromosome	12	has	260	420	

genes	present.		We	scanned	the	genes	present	in	this	arm	of	chromosome	12	for	genes	421	

potentially	involved	in	virulence,	which	might	prove	advantageous	to	the	progression	of	422	

infection	or	drug	resistance.		One	such	gene	was	SFB2	(CNAG_06093),	which	is	involved	423	

in	the	conservation	of	the	sterol	regulatory	element-binding	protein	pathway	(SREBP)	424	

(Chang	et	al.	2009).		An	alcohol	dehydrogenase	(GNO1	–	CNAG_06168)	was	also	present,	425	

which	is	thought	to	be	involved	in	the	defence	against	host	response	(de	Jesús-Berríos	426	

et	al.	2003).		Analysis	for	enrichment	of	metabolic	pathways	also	revealed	that	the	427	

genes	present	in	this	chromosome	arm	are	significantly	involved	in	the	metabolism	of	428	

drugs	(corrected	p-value	p	<	3.81e-2).	429	
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We	searched	for	copy	number	variation	in	genes	known	to	be	involved	in	drug	430	

resistance	and	virulence.		CAP10	appeared	to	be	haploid	in	all	isolates,	with	the	431	

exception	of	Pairs	4	and	5,	where	the	initial	infection	(CCTP52)	and	recurrent	infection	432	

(RCT9-d99)	were	found	to	be	diploid,	respectively.		However,	on	closer	inspection	(see	433	

Methods),	we	believe	that	the	isolates	in	Pairs	4	and	5	(CCTP52	and	RCT9-d99)	have	434	

diploid	genomes,	implying	that	the	CAP10	gene	is	actually	tetraploid.		Whether	the	435	

remaining	isolates	in	these	two	pairs	(CCTP52-d55	and	RCT9)	have	diploid	genomes	436	

could	not	be	distinguished,	however,	it	is	clear	that	CAP10	loses	ploidy	from	initial	437	

infection	to	relapse	for	Pair	4,	with	no	evidence	of	loss	of	heterozygosity	(LoH),	whilst	438	

the	reverse	is	true	for	Pair	5.		CAP10	was	also	found	to	be	tetraploid	(as	the	genomes	of	439	

these	isolates	were	found	to	be	diploid)	in	both	initial	and	recurrent	infections	for	Pairs	440	

3	and	17.	441	

The	ERG11	gene	on	chromosome	1	was	found	to	have	increased	copy	number	in	442	

numerous	pairs	(2,	3,	4,	5,	9,	12,	and	17),	and	was	not	found	to	be	lineage-associated.		443	

However	this	CNV	was	maintained	throughout	infection	to	recurrence	in	all	pairs,	with	444	

the	exception	to	Pair	4;	since	Pair	4	initial	infection	(CCTP52)	was	found	to	have	a	diploid	445	

genome,	ERG11	was	tetraploid,	and	lost	this	ploidy	to	be	diploid	with	respect	to	the	rest	446	

of	the	genome	in	the	recurrent	infection	(CCTP52-d55).		Whilst	chromosome	1	was	447	

duplicated	in	the	initial	infection	isolate	of	Pair	15	(IFNR11),	ERG11	was	found	to	be	448	

haploid;	the	ploidy	of	chromosome	was	subsequently	lost	in	the	recurrent	infection	449	

isolate	of	Pair	15	(IFNR11-d203).		450	
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ERG11	in	Pair	4	(ID	CCTP52)	did	not	have	any	nsSNPs	in	the	original	infection	(CCTP52),	451	

but	one	nsSNPs	was	present	in	ERG11	in	the	recurrent	infection	(CCTP52-d55).		Clinical	452	

notes	show	that	the	patient	from	which	Pair	4	was	isolated	was	given	fluconazole	(400	453	

mg/d)	on	initial	infection,	did	not	attend	follow	up	or	receive	ART	or	further	fluconazole,	454	

and	was	then	re-admitted	and	died	from	CM	recurrence	at	day	55.			MIC	values	were	455	

unfortunately	not	available	for	either	original	or	recurrent	isolates.	456	

Nonsense	mutations	in	DNA	mismatch	repair	genes	cause	hypermutator	states	457	

Phylogenetic	analysis	on	a	chromosome-by-chromosome	basis	revealed	that	Pair	3	458	

isolates	only	clustered	together	in	two	of	the	fourteen	chromosomes;	the	three	isolates	459	

were	phylogenetically	dissimilar	in	4	chromosomes,	whilst	day	257	and	409	isolates	(Pair	460	

3	CCTP50-d257	and	CCTP50-d409)	were	phylogenetically	more	similar	to	each	other	461	

than	to	the	day	1	isolate	(CCTP50)	in	five	chromosomes.		Day	1	and	day	409	isolates	462	

were	more	phylogenetically	similar	than	to	the	day	257	isolate	in	three	chromosomes.		463	

The	lack	of	phylogenetic	similarity	(12	out	of	14	chromosomes)	shown	in	the	three	464	

isolates	of	Pair	3	indicated	that	these	three	isolates	do	not	show	a	recent	common	465	

ancestor,	and	provides	evidence	for	reinfection	with	a	new	isolate,	rather	than	relapse.		466	

In	contrast,	the	two	isolates	in	Pair	17	were	only	phylogenetically	related	for	five	out	of	467	

the	14	chromosomes	(Supplementary	Figure	1),	suggesting	that	on	this	basis	the	468	

recurrent	infection	was	distinct	enough	as	to	be	defined	as	a	non-relapse	infection	in	469	

this	Pair.		However,	on	further	investigation	this	was	found	not	to	be	the	case.			470	
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We	analysed	the	coverage	profiles	and	synonymous/non-synonymous	ratios	of	both	471	

isolates	in	Pair	17	(Figure	2c).		Although	the	aneuploidies	observed	were	extensive	472	

throughout	the	genome,	the	increases	in	ploidy	appeared	on	similar	chromosomes	in	473	

both	isolates.		A	similar	observation	was	seen	for	the	strikingly	increased	number	of	474	

nsSNPs	in	both	isolates	in	Pair	17:	41,549	and	46,622	nsSNPs	for	IFNR23	and	IFNR23-475	

d179	respectively;	an	even	larger	increase	in	synonymous	SNPs	was	also	observed	476	

(68,094	and	82,172	synonymous	SNPs	for	IFNR23	and	IFNR23-d179	respectively).		We	477	

therefore	sought	to	identify	a	mechanism	responsible	for	the	high	number	of	478	

synonymous	and	nsSNPs,	and	ploidy.	479	

Previous	studies	have	reported	that	mutations	in	the	DNA	mismatch	repair	gene	MSH2	480	

have	resulted	hypermutator	effects	in	bacteria	and	the	yeast	S.	cerevisiae	(Drotschmann	481	

et	al.	1999).		Both	Pair	17	isolates	were	found	to	harbour	two	nonsense	(i.e.	point	482	

mutations	in	the	DNA	sequence	that	result	in	a	premature	stop	codon)	mutations	within	483	

the	coding	region	of	the	gene	encoding	MSH2,	the	DNA	mismatch	repair	protein.		484	

Nonsense	mutations	in	MSH2	were	not	observed	in	any	other	pairs	included	in	this	485	

study.		These	mutations	were	in	the	same	positions	in	both	the	original	and	recurrent	486	

isolates	(Ser-888-STOP	and	Ser-86-STOP).			487	

We	then	performed	a	genome-wide	search	in	both	Pair	17	isolates	to	identify	further	488	

nonsense	mutations	in	DNA	mismatch	repair	genes.		Both	Pair	17	isolates	were	found	to	489	

harbour	a	single	nonsense	mutation	within	the	coding	regions	of	genes	encoding	MSH5	490	

and	RAD5.		Again,	nonsense	mutations	in	these	genes	were	not	observed	in	any	other	491	
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pairs	included	in	this	study.		These	nonsense	mutations	caused	Gln-1066-STOP	in	RAD5,	492	

and	Gln-709-STOP	in	MSH5	in	both	original	and	recurrent	isolates.	493	

Since	the	likelihood	of	such	mutations	occurring	by	chance	in	independent	genomes	494	

lacking	a	common	ancestor	is	very	small,	this	suggest	that	rather	than	being	a	495	

reinfection,	this	was	indeed	a	relapse	of	the	original	infection,	and	the	phylogenetic	496	

dissimilarity	between	the	two	isolates	was	due	to	hypermutation.		A	total	of	293	SNPs	497	

were	located	in	MSH2	in	both	Pair	17	isolates,	compared	to	a	mean	of	30	SNPs	per	498	

isolate	in	the	remaining	Pairs	that	we	studied	(Supplementary	Table	2).		More	SNPs	499	

overall	were	observed	in	the	recurrent	isolate	(IFNR23-d179)	in	both	RAD5	and	MSH5	500	

(361	and	357	respectively)	when	compared	to	the	original	isolate	(IFNR23	–	320	for	501	

RAD5,	305	for	MSH5).		These	numbers	are	considerably	higher	than	the	average	of	46	502	

SNPs	and	37	SNPs	per	isolate	in	the	remaining	Pairs	included	in	this	study	for	RAD5	and	503	

MSH5	respectively.	504	

Discussion	505	

Relapse	of	CM	caused	by	C.	neoformans	is	usually	due	to	the	persistence	and	recurrence	506	

of	the	original	infecting	isolate	(Spitzer	et	al.	1993),	and	studies	often	focus	on	rates	of	507	

within-host	microevolution	between	serially	collected	isolates.		However,	recent	studies	508	

have	shown	that	an	infection	of	a	population	of	dissimilar	genotypes	is	responsible	for	509	

20%	of	relapse	cases	(Desnos-Ollivier	et	al.	2010).		We	used	whole-genome	sequencing	510	

to	distinguish	co-infections	of	a	population	of	genotypes	from	a	relapse	of	a	single	511	

genotype	owing	to	treatment	failure	(Figure	3).		Using	WGS	we	can	distinguish	between	512	
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relapses	of	infection	of	the	same	genotype,	which	differ	by	only	a	few	SNPs,	whilst	initial	513	

infection	by	a	population	of	dissimilar	genotypes	will	see	a	difference	of	many	SNPs	514	

between	initial	and	relapse	infection	as	genetic	drift	occurs.		Our	results	show	that	C.	515	

neoformans	incurs	numerous	unique	small	and	large-scale	changes	during	infection,	and	516	

that	a	subset	of	these	may	have	adaptive	value.		Whilst	this	study	is	concerned	with	the	517	

genomics	of	recurrent	infections	by	identifying	SNP	changes	and	ploidy	potentially	518	

involved	in	the	persistence	of	C.	neoformans	infection,	future	work	should	investigate	519	

the	potential	role	of	gene	expression	changes	and	gene	networks	involved	in	changes	in	520	

fitness	amongst	the	populations	of	infecting	genotypes	that	underpin	the	recurrence	of	521	

infection.		Previous	studies	in	Brucella	infection	and	TB	have	highlighted	the	merits	of	522	

using	transcriptomics	to	identify	patients	requiring	more	intensive	treatment	(Dufort	et	523	

al.	2016)	and	differentiating	between	dormancy	and	reactivation	(Kondratieva	et	al.	524	

2014)	respectively.		Given	the	higher	genetic	variation	observed	in	the	VNB	lineage,	the	525	

genomic	data	could	also	be	exploited	to	investigate	genome	content	variation,	as	this	is	526	

known	to	be	a	major	determinant	in	yeast	phenotypic	variation	(56).		Such	approaches	527	

are	likely	to	increase	our	understanding	of	clinical	cases	of	recurrent	C.	neoformans	528	

infections	through	identifying	the	genetic	basis	of	phenotypic	switching	(D’Souza	&	529	

Heitman	2001)	and	the	gene	regulatory	networks	involved	in	latency,	virulence	and	530	

resistance	to	antifungal	therapies.	531	

One	pair	(Pair	3)	included	in	this	study	did	not	display	a	relapse	of	the	initial	infecting	532	

isolate.		Analysis	of	this	pair	showed	that	only	46%	of	SNPs	were	in	common	between	533	

the	initial	and	recurrent	infection,	suggesting	that	relapse	was	caused	by	a	new,	albeit	534	
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similar,	genotype.		These	co-infection	events	are	rarely	reported	in	literature;	however,	535	

Hagen	et	al.	did	find	evidence	of	co-infection	in	a	single	patient	using	AFLP	(58).	The	536	

extensive	chromosomal	copy	number	variations,	or	aneuploidies,	observed	in	Pair	3	537	

(Figure	2)	also	show	that	different	genotypes	were	isolated	at	subsequent	timepoints	538	

(days	257	and	409).		Phylogenetic	analyses	showed	that	this	pair	belongs	to	the	VNB	539	

lineage;	it	is	known	that	a	population	of	VNB	genotypes	can	be	found	in	one	location,	540	

such	as	on	the	same	tree	(Vanhove	et	al.	2016).		Therefore,	it	is	possible	for	a	single	541	

immunocompromised	individual	to	inhale	a	cluster	of	basidiospores	from	a	single	542	

mating	population,	which	would	lead	to	a	cluster	of	related,	but	recombined	genotypes	543	

that	then	come	to	dominate	the	infection	at	different	timepoints.		Although	a	544	

population	can	reside	in	an	environmental	reservoir,	recombination	between	genotypes	545	

can	occur,	generating	closely	related,	yet	distinct,	genotypes	(Figure	3b).		This	latter	546	

hypothesis	supports	our	observations	of	differing	numbers	of	nsSNPs	between	day	257	547	

(CCTP50-d257)	and	the	original	(CCTP50)	and	day	409	(CCTP50-d409)	isolates,	as	well	as	548	

the	ploidies	and	MIC	values	(Table	1)	seen	at	the	time	of	sample	isolation:		the	day	1	549	

isolate	(CCTP50)	initially	had	an	intermediate	FLC	MIC	of	16	ug/ml,	whilst	the	recurrent	550	

isolate	at	day	257	had	a	highly	resistant	FLC	MIC	of	256	ug/ml.		These	MIC	values	are	551	

suggestive	of	drug-resistant	genotypes	being	present	and	selected	for	within	this	patient	552	

by	the	prolonged	maintenance	on	FLC	monotherapy	following	induction	therapy	with	553	

amphotericin	B.		It	is	also	likely	that	the	population	of	VNB	isolates	circulating	in	the	554	

patient	were	not	sufficiently	sampled	by	sequencing	only	one	colony	at	each	timepoint,	555	

and	that	deeper	sequencing	would	have	uncovered	greater	genomic	diversity.	556	
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The	occurrence	of	aneuploidy,	where	an	abnormal	number	of	chromosomes	is	observed,	557	

is	seen	as	an	evolutionary	process	that	rapidly	alters	fitness,	and	has	been	described	in	558	

multiple	human	fungal	pathogens	as	a	means	of	generating	drug	resistance	(Selmecki	et	559	

al.	2006;	Sionov	et	al.	2010).		Sionov	et	al.	(Sionov	et	al.	2010)	reported	the	duplication	560	

of	multiple	chromosomes	in	response	to	high	concentrations	of	FLC,	which	resulted	in	561	

genotypes	developing	FLC	drug	resistance.		Associated	gene	duplications	in	C.	562	

neoformans	chromosome	1	included	ERG11	and	AFR1,	which	are	both	transporters	of	563	

azole	drugs.		Whilst	duplications	of	ERG11	were	seen	in	seven	pairs	(2,	3,	4,	5,	9,	12	and	564	

17),	these	were	not	necessarily	associated	with	an	entire	duplication	of	chromosome	1.	565	

Sionov	et	al.	suggested	that	ERG11	contributed	to	the		duplication	of	chromosome	1	566	

(Sionov	et	al.	2010);	we	observed	only	one	isolate	(IFNR11	of	Pair	15)	displaying	a	567	

duplication	of	chromosome	1,	but	a	single	copy	of	ERG11,	suggesting	ploidy	was	not	568	

complete	throughout	the	chromosome.		Since	this	isolate	was	the	initial	infection,	we	569	

can	assume	that	the	duplication	of	chromosome	1	was	not	solely	due	to	stress	of	azole	570	

drug	treatment,	suggesting	that	ploidy	can	be	activated	under	different	conditions,	such	571	

as	the	stress	associated	with	adaptation	to	the	host.		A	possible	limitation	is	that	the	572	

observed	duplication	may	be	due	to	prolonged	frozen	storage.	573	

Ormerod	et	al.	(Ormerod	et	al.	2013)	showed	an	aneuploidy	(duplication)	in	574	

chromosome	12	between	serially	collected	isolates.		Four	pairs	included	in	this	study	575	

(Pair	1,	5,	10	and	14)	all	showed	aneuploidy	in	chromosome	12;	however,	Pair	14	(ID	576	

IFNR19)	displayed	this	aneuploidy	in	both	the	initial	and	relapse	infections.		Since	577	

aneuploidies	are	typically	lost	upon	removal	of	drug	pressure	(Sionov	et	al.	2010),	one	578	
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can	assume	that	this	aneuploidy	was	maintained	due	to	previous	drug	exposure	579	

potentially	not	reported	by	the	patient,	or	that	aneuploidy	helps	C.	neoformans	adapt	to	580	

the	host	environment	(Morrow	&	Fraser	2013).		Chromosome	12	experienced	triploidy	581	

in	the	Pair	1	recurrent	isolate	(CCTP27-d121);	this	pair	also	demonstrated	drug	582	

resistance	to	fluconazole,	with	a	FLC	MIC	of	4	at	initial	infection,	and	a	FLC	MIC	of	64	at	583	

recurrent	infection.		Ormerod	et	al.	(Ormerod	et	al.	2013)	hypothesise	that	the	large	584	

number	of	genes	affected	by	the	increased	copy	number	of	chromosome	12	contributes	585	

to	metabolome	differences;	however,	we	hypothesise	copy	number	variation	of	586	

chromosome	12	is	a	response	to	FLC	stress,	resulting	in	increased	MIC,	and	that	some	587	

genes	present	on	chromosome	12,	such	as	ERG8	and	CAP6,	may	be	targets	of	azole	588	

drugs	or	involved	in	C.	neoformans	virulence.	589	

Antimicrobial	drugs	impose	strong	selection	pressure	on	pathogens,	with	may	lead	to	590	

the	evolution	of	drug	resistance	(Mu	et	al.	2010;	Didelot	et	al.	2016);	there	are,	however,	591	

fitness	costs	associated	with	the	evolution	of	resistance	to	antifungal	drugs	that	may	592	

impact	fitness	(Cowen	et	al.	2001).		Genome-wide	scans	for	sites	under	selection	leads	593	

to	the	identification	of	possible	sites	of	drug	resistance.		We	did	not	identify	any	594	

significant	sites	when	comparing	VNI	original	infection	versus	recurrent	infection,	and	595	

the	number	of	VNB	and	VNII	isolates	were	too	low	for	analysis.		Whilst	these	results	596	

could	be	interpreted	as	there	being	no	sites	under	selection	in	the	VNI	isolates	sampled	597	

in	this	study,	it	is	more	likely	that	similar	patterns	would	not	be	seen	amongst	598	

individuals	due	to	stochasticity	and	clonal	interference	(Didelot	et	al.	2016).		It	is	also	599	

likely	that	as	there	is	little	recombination	in	VNI	isolates	compared	to	VNB	and	VNII	600	
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isolates	(Khayhan	et	al.	2013;	Litvintseva	et	al.	2011;	Litvintseva	2005)	and	therefore	601	

linkage	is	complete	across	the	genome,	further	hampering	selection	analysis.		We	602	

therefore	found	no	evidence	for	genetically	determined	alterations	in	drug	resistance	in	603	

the	study	isolates.	604	

MIC	values	were	only	obtained	for	9	out	of	35	isolates	in	this	study	at	the	time	of	605	

sampling.		Susceptibility	testing	at	a	later	date	revealed	all	the	isolates	to	be	susceptible	606	

to	antifungal	drugs	including	FLC,	suggesting	that	any	resistant	phenotypes	had	been	607	

lost	in	the	absence	of	drug	selective	pressure.		It	is	therefore	important	for	clinicians	to	608	

request	susceptibility	testing	in	real	time,	at	the	very	least	in	all	cases	or	recurrent	CM.	609	

Whilst	Pair	17	did	not	exhibit	a	high	percentage	of	common	SNPs	between	the	original	610	

and	recurrent	isolates	indicative	of	a	relapse	infection,	the	elevated	rate	of	SNPs	611	

observed	in	all	chromosomes	of	both	isolates	suggested	this	was	not	a	re-infection	as	612	

seen	in	Pair	3	(Figure	3c).		Rather,	our	results	suggest	that	the	isolates	in	this	pair	were	613	

exhibiting	a	hypermutator	phenotype,	as	a	result	of	two	nonsense	mutations	in	the	DNA	614	

mismatch	repair	gene	MSH2,	and	one	nonsense	mutation	in	each	of	the	DNA	mismatch	615	

repair	genes	RAD5	and	MSH5.		Whilst	previous	studies	have	shown	hypermutator	616	

phenotypes	aid	adaptation	to	stress	(Magditch	et	al.	2012),	and	we	hypothesise	that	617	

hypermutation	may	lead	to	adaptation	of	drug	resistance	under	the	stress	of	antifungal	618	

treatment.		These	results	are	the	first	to	the	authors’	knowledge	to	report	on	nonsense	619	

mutations	in	MSH2,	RAD5	and	MSH5	in	C.	neoformans.	Further	investigation	is	required	620	

to	determine	whether	these	nonsense	mutations	have	a	role	in	drug	resistance	621	
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phenotypes	using	transcriptomic	approaches	and	creating	single-gene	knockout	622	

mutants	of	MSH2,	RAD5	and	MSH5.		It	is	also	necessary	to	test	the	virulence	of	623	

hypermutator	isolates	in	the	mouse	model	and	to	describe	the	impact	of	the	increase	in	624	

mutation	rate	that	occur	a	result	of	this	hypermutation.		Our	study	only	includes	one	625	

pair	of	hypermutator	genotypes,	so	further	sampling	is	required	to	identify	whether	this	626	

phenomenon	is	specific	to	the	VNB	lineage,	whether	hypermutators	occur	in	the	VNII	627	

and	VNI	lineages,	and	whether	they	are	clinically	relevant.	628	

This	work	represents	the	most	extensive	comparative	genome-sequencing	based	study	629	

to	investigate	microevolution	in	serially	collected	isolates	of	C.	neoformans	to	date.		The	630	

observation	of	an	infection	of	a	single	patient	with	a	population	of	VNB	isolates	is	631	

clinically	relevant,	as	widely	used	drug	regimens	with	azole	monotherapy	may	not	be	632	

effective	against	such	a	genetically	diverse	infection.		It	is	also	likely	that	the	extensive	633	

genetic	diversity	seen	in	clinically	isolated	VNB	isolates	may	be	due	to	mixed	infection.		634	

Hypermutation	due	to	nonsense	mutations	in	the	DNA	mismatch	repair	genes	MSH2,	635	

RAD5	and	MSH5	cause	an	increased	mutation	and	rate	of	aneuploidy	in	C.	neoformans,	636	

which	may	confer	an	increased	ability	to	adapt	to	drug	pressure.		Further	sampling	is	637	

required	to	identify	whether	hypermutation	is	a	phenomenon	only	observed	in	the	VNB	638	

lineage,	and	how	these	mutations	impact	the	fitness	of	C.	neoformans	by	imposing	a	639	

high	genetic	load.	640	
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	Figure	legends	833	

	834	

Figure	1	–	Phylogenetic	analysis	of	C.	neoformans	var.	grubii	isolates	in	this	study	835	

(coloured),	with	additional	isolates	(shown	in	black)	added	to	distinguish	true	relapse	836	

infections,	or	recurrent	infections,	and	associated	lineages.		We	hypothesise	that	837	

isolates	resulting	from	true	relapse	infections	would	be	closely	related	phylogenetically.		838	

Bootstrap	analysis	over	500	replicates	was	performed	on	WGS	SNP	data	from	62	isolates,	839	

including	the	35	isolates	included	in	this	study,	to	generate	an	unrooted	maximum-840	

likelihood	phylogeny,	with	all	branches	supported	to	69%	or	higher	(with	the	exception	841	

to	a	particularly	clonal	VNI	clade,	including	Pair	15	only,	which	only	had	47%	branch	842	

support).		Branch	lengths	represent	the	number	of	SNPs	between	taxa.	843	
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	844	

Figure	2	–	Extensive	chromosomal	copy	number	variation	was	observed	in	all	isolates	in	845	

Pairs	3	and	17,	when	compared	to	H99.		Pair	2	is	included	to	illustrate	isolates	without	846	

ploidy	and	extensive	nsSNPs.		Here,	normalised	whole-genome	depth	of	coverage	is	847	

shown,	averaged	over	10,000-bp	bins,	in	scatter	plots.		Bar	plots	represent	the	position	848	

of	nsSNPs.		The	purple	track	represents	the	original	isolate,	orange	the	recurrent	isolate,	849	

and	green	(in	the	case	of	Pair	3)	for	the	final	recurrent	isolate.		a)	No	increase	in	ploidy	is	850	
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observed	in	either	the	original	or	recurrent	isolate	of	Pair	2,	and	a	small	number	of	851	

nsSNPs	are	seen.	b)	Increase	in	ploidy	is	observed	in	many	chromosomes	in	the	Day	1	852	

isolate	for	Pair	3,	some	of	which	are	lost	over	time.		A	large	number	of	nsSNPs	are	853	

observed	in	all	chromosomes	in	isolates	of	Pair	3,	with	chromosome	6	being	the	854	

exception:	very	few	nsSNPs	are	located	in	chromosome	6	in	CCTP50	and	CCTP50-d409,	855	

whereas	over	2000	nsSNPs	are	observed	in	chromosome	6	in	CCTP50-d257.		c)	a	gain	in	856	

ploidy	is	observed	for	Chromsomes	2,	4,	6	and	9	compared	to	the	Day	1	isolate	in	Pair	17,	857	

whereas	ploidy	remains	unchanged	for	Chromosomes	1	and	12.	858	
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	859	
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Figure	3	–	Hypotheses	of	routes	of	infection	of	the	human	host	by	C.	neoformans	var.	860	

grubii.		a)	Inhalation	of	a	single	population	of	basidiospores	into	a	new	host.		Due	to	low	861	

within-host	diversity	and	being	drug	naïve,	there	will	be	a	bottleneck	in	population	size	862	

due	to	antifungal	drug	treatment.		However,	if	the	initial	drug	regimen	is	insufficient	to	863	

sterile	the	CSF,	resistance	may	develop	on	FLC	maintenance	therapy	due	to	selection	864	

pressure,	resulting	in	relapsed	infection	from	proliferation	of	a	drug-resistant	isolate.		b)		865	

VNB	lineage	C.	neoformans	exists	the	environment	as	a	population,	which	can	undergo	866	

recombination	to	produce	genetically	similar	isolates,	but	with	significantly	diversity.		867	

Due	to	transmission	bottlenecks,	only	a	sample	of	the	pathogen	diversity	will	be	868	

transferred	to	the	host,	in	this	case,	by	inhalation,	but	it	is	possible	for	a	population	of	C.	869	

neoformans	to	infect	a	single	immunocompromised	individual.		Some	isolates	may	be	870	

susceptible	to	antifungal	drugs	and	are	thus	becoming	removed,	whilst	other	isolates	871	

may	be	inherently	resistant	and	hence	cause	a	relapse	infection.		c)		Mutations	in	the	872	

DNA	mismatch	repair	gene	MSH2	cause	an	isolate	to	become	a	hypermutator.		Some	873	

genotypes	may	be	susceptible	to	antifungal	drugs,	but	the	high	mutation	rate	allows	the	874	

infection	to	adapt	rapidly	to	the	host	and	evolve	drug	resistance.			These	genotype	875	

proliferate	in	the	host,	thus	causing	relapse	infection.	876	

Tables	877	

Table	1:	Details	of	C.	neoformans	isolates	and	MICs	(if	available)	at	time	of	isolation	from	878	

South	Africa	and	Uganda	(Pair	7	only)	used	in	this	study.		AmB	=	amphotericin	B	1	879	
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mg/kg/d,	as	per	hospital	guidelines	at	that	time,	unless	otherwise	stated;	VOR	=	880	

voriconazole	300	mg/d;	5FC	=	flucytosine;	FLC	=	fluconazole.	881	

Pair	#	 Isolate	ID	 Day	of	isolation	 Fluconazole	MIC	

at	isolation	

Treatment	of	CM	

episode	(if	known)	

1	 CCTP27	 1	 4	 AmB	3	days	

1	 CCTP27-

d121	

121	 64	 VOR	until	CD4	>	200	

cells/uL	

2	 CCTP32	 1	 4	 AmB	7	days	

2	 CCTP32-

d132	

132	 6	 AmB	7	days	

3	 CCTP50	 1	 16	 AmB	14	days	

3	 CCTP50-

d257	

257	 256	 AmB	14	days	

3	 CCTP50-

d409	

409	 n/a	 AmB	7	days	

4	 CCTP52	 1	 n/a	 FLC	400	mg/d	

4	 CCTP52-d55	 55	 n/a	 FLC	400	mg/d	

5	 RCT9	 1	 2	 AmB	0.7	mg/kg/d	plus	

5FC	for	14	days	

5	 RCT9-d99	 99	 n/a	 AmB	until	death	

6	 RCT24	 1	 4	 AmB	plus	5FC	for	14	
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days	

6	 RCT24-d154	 154	 12	 FLC	800	mg/d	

7	 1600-1	 1	 n/a	 FLC	16000	mg/d	for	14	

days	

7	 1600-1-d106	 106	 n/a	 	

8	 IFNR63	 1	 n/a	 AmB	plus	5FC	

8	 IFNR63-d128	 128	 n/a	 	

9	 IFNR24	 1	 n/a	 AmB	7	days	

9	 IFNR24-d101	 101	 n/a	 	

10	 IFNR18	 1	 n/a	 AmB	7	days	

10	 IFNR18-d134	 134	 n/a	 	

11	 IFNR14	 1	 n/a	 AmB	7	days	

11	 IFNR14-d97	 97	 n/a	 	

12	 IFNR13	 1	 n/a	 AmB	7	days	

12	 IFNR13-d95	 95	 1	 	

13	 IFNR6	 1	 n/a	 AmB	7	days	

13	 IFNR6-d73	 73	 1	 	

14	 IFNR19	 1	 n/a	 AmB	7	days	

14	 IFNR19-d111	 111	 n/a	 	

15	 IFNR11	 1	 n/a	 AmB	7	days	

15	 IFNR11-d203	 203	 12	 	
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16	 IFNR27	 1	 n/a	 AmB	7	days	

16	 IFNR27-d204	 204	 n/a	 	

17	 IFNR23	 1	 n/a	 AmB	7	days	

17	 IFNR23-d179	 179	 n/a	 	

	882	

Table	2:	A	high	number	of	shared	SNPs	in	most	pairs	indicate	a	shared	common	ancestor.		883	

Number	of	SNPs	common	to	both	initial	and	recurrent	infection,	along	with	number	of	884	

SNPs	and	non-synonymous	SNPs	unique	to	each	timepoint.		Percentages	given	to	2	d.p.				885	

Pair	 Common	SNPs	

(%	total)	

Day	1	SNPs	

(%	total)	

No.	Day	

1	

nsSNPs	

(genes	

mapped

)	

Relapse	SNPs	

(%	total)	

No.	Relapse		

nsSNPs	

(genes	

mapped)	

Relapse	#2	

SNPs	(%	total)	

No.	Relapse	

#2	nsSNPs	

(genes	

mapped)	

1	 13490	(98.49)	 97	(0.71)	 9	(8)	 110	(0.81)	 19	(8)	

	

	 	

2	 289557	

(99.29)	

1080	(0.37)	 110	(55)	 991	(0.34)	 108	(45)	 	 	

3	 261718	

(46.77)	

127631	

(32.78)	

25331	

(2741)	

45769	(14.88)	 8342	(2099)	 124498	

(32.24)	

23957	

(2541)	

4	 289574	 1169	(0.40)	 145	(58)	 1096	(0.38)	 145	(56)	 	 	
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	886	

Supplementary	material	887	

Table	S1	-	MLST	results	of	independently	testing	three	colonies	per	study	isolate.			888	

(99.22)	

5	 289367	

(99.20)	

1261	(0.43)	 127	(54)	 1080	(0.37)	 127	(59)	 	 	

6	 13122	(95.78)	 133	(1.00)	 5	(2)	 445	(3.28)	 82	(56)	 	 	

7	 47833	(97.83)	 522	(1.08)	 81	(65)	 537	(1.11)	 94	(72)	 	 	

8	 46883	(98.76)	 294	(0.62)	 29	(9)	 296	(0.63)	 26	(16)	 	 	

9	 289458	

(99.27)	

1033	(0.36)	 141	(58)	 1109	(0.38)	 105	(55)	 	 	

10	 12687	(98.29)	 104	(0.81)	 4	(3)	 117	(0.91)	 11	(5)	 	 	

11	 12732	(98.38)	 110	(0.86)	 10	(2)	 99	(0.77)	 6	(5)	 	 	

12	 221973	

(99.37)	

636	(0.29)	 55	(27)	 778	(0.35)	 61	(30)	 	 	

13	 48062	(98.58)	 396	(0.82)	 31	(11)	 294	(0.61)	 28	(15)	 	 	

14	 28960	(95.66)	 288	(0.98)	 44	(19)	 1026	(3.42)	 105	(57)	 	 	

15	 29736	(98.40)	 254	(0.85)	 21	(14)	 228	(0.76)	 17	(13)	 	 	

16	 45437	(98.56)	 325	(0.71)	 30	(18)	 341	(0.74)	 30	(14)	 	 	

17	 376568	

(56.43)	

117436	

(23.77)	

22567	

(4153)	

173359	

(31.52)	

33543	

(4427)	
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Table	S2	-	Number	of	SNPs	in	MSH2	in	each	isolate,	categorised	by	type	or	location.		SYN	889	

=	synonymous	SNP,	NSY	=	non-synonymous	SNP,	p5UTR	=	5’	UTR,	p3UTR	=	3’	UTR,	890	

NON	=	nonsense	mutation.	891	

Table	S3	-	Non-synonymous	SNPs	in	Pair	3	isolates,	per	chromosome	892	

Table	S4	-	Number	of	non-synonymous	and	synonymous	SNPs	per	isolate	893	

Table	S5	-	Details	of	alignment	and	variant	calling	for	all	paired	isolates	included	in	this	894	

study	895	

Table	S6	-	Number	of	homozygous	and	heterozygous	SNPs	in	isolates	of	Pairs	suspected	896	

of	diploidy.	897	

Figure	S1	–	Phylogenetic	analysis	each	chromosome	of	C.	neoformansi	isolates	in	this	898	

study	(coloured)	with	additional	isolates	(shown	in	black),	to	identify	whether	Pair	3	899	

consists	of	different	isolates	or	is	a	relapsed	infection.		We	hypothesised	that	if	Pair	3	900	

was	a	relapsed	infection,	all	isolates	would	share	the	same	phylogenetic	relationship	in	901	

all	14	chromosomes.		Rapid	bootstrap	analysis	over	250	replicates	was	performed	on	902	

SNP	data	from	62	isolates	to	generate	an	unrooted	maximum-likelihood	phylogeny	(only	903	

branches	not	supported	to	100%	are	indicated	above	branches).		Branch	lengths	904	

represent	the	number	of	SNPs	between	taxa.	905	

Figure	S2	–	Chromosomal	copy	number	variation	can	be	observed	in	some	isolates	in	906	

Pairs	1,	4,	5,	10,	14	and	15,	when	compared	to	the	C.	neoformans	reference	genome,	907	

H99.		Normalised	whole-genome	depth	of	coverage	is	illustrated	here,	averaged	over	908	
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10,000-bp	bins	and	represented	as	a	scatter	plot.		Bar	plots	represent	the	position	of	909	

nsSNPs,	where	the	purple	track	represents	the	original	isolate,	and	orange	represents	910	

the	recurrent	isolate.		Note	that	Pairs	2,	3	and	17	are	not	present	in	this	Figure,	as	they	911	

are	represented	in	Figure	2.	912	


