
SUPPLEMENTARY NOTE 1. Look-up of previously identified loci in our data set 1 
 2 

To fully explore the efficacy of accounting for smoking in GWAS of adiposity traits, we conducted a look-3 
up in our data of recently published SNP associations with BMI, WHRadjBMI, and WCadjBMI identified in 4 

well-powered GWAS meta-analyses that did not account for SMK status1,2. Although our sample size was 5 
as little as one third of previously published GWAS1,2, the majority of these loci (92% for BMI, 97% for 6 
WCadjBMI, and 92% for WHRadjBMI) reached Bonferroni corrected significant for at least one of the 7 

three Approaches in the current study.  8 
 9 
All previously identified 97 BMI-associated SNPs were nominally significant (P<0.05) in Approach 1 10 

(SNPadjSMK) for BMI including the sex-specific loci, 95 of the 97 for Approach 2 (SNPjoint), and seven 11 
for Approach 3 (SNPint). A total of 86 loci reached Bonferroni-corrected significance (P<5.15x10-4) for 12 

Approach 1, 85 for Approach 2, and none for Approach 3. Finally, 41 loci from Approach 1 and 39 of the 13 
97 from Approach 2 reached genome-wide significance (GWS, P<5x10-8) (44 in total, 45%) 14 
(Supplementary Table 11).  Of the 97 previously identified main effects loci for BMI, 3 of these we re 15 

genome-wide significant GWS for women-only, 3 for men-only and the remaining in the sex-combined 16 
analysis in the previous publication. It is also worth noting that we report results for the All Ancestries 17 
meta-analysis, as this was our primary meta-analysis data-set; however, Locke et al.  (2015) considered 18 

their European-descent only meta-analysis their primary data-set.  19 
 20 

Of the 77 previously-identified WCadjBMI loci, 3 of these were GWS for women-only, 3 for men-only 21 
and the remaining in the sex-combined analysis as reported in Shungin et al2. Of these, 75 were 22 
nominally significant for Approachch 1 (SNPadjSMK) and Approach 2 (SNPjoint), and 5 for Approach 3 23 

(SNPint). A total of 73 were Bonferroni-corrected significant (P<6.49x10-4) for Approach 1 and 2; with 41 24 
and 40 reaching GWS, respectively (43 non-overlapping, 56%) (Supplementary Table 12).  25 
 26 

Eleven of the 68 previously published WHRadjBMI SNPs were associated in the women-only analyses in 27 
the previous investigation2. Of the 68 variants, 64 were nominally significant for Approach 1 28 

(SNPadjSMK), 59 for Approach 2 (SNPjoint), and 10 for Approach 3 (SNPint). A total of 61 were 29 
Bonferroni-corrected significant (P<6.49x10-4) for Approach 1 and 38 for Approach 2; with 36 and 8 30 
reaching GWS, respectively (36 in total, 53%) (Supplementary Table 13). 31 

 32 
In summary, we replicated all previously-identified BMI loci using one or more of our approaches  33 

(P<0.05 and concordant direction of effect), but did not replicate all previously-identified loci for 34 
WCadjBMI and WHRadjBMI in our current analyses. It is unclear if the lack of replication of previous 35 
findings is due to smaller sample size, patterns of linkage disequilibrium in our all ancestries sample, the 36 

adjustment of smoking status in the current discovery analysis, or even a combination of these factors.  37 
 38 
SUPPLEMENTARY NOTE 2. Summary of literature search on genes nearest to the 21 novel loci and all 39 

GxSMK interaction loci. 40 
 41 

We used SNIPPER (http://csg.sph.umich.edu/boehnke/snipper/) to identify potential biological functions 42 
of genes ±500kb of our novel association signals and those from Approach 3 (SNPint) for further 43 
investigation, and present a summary of those findings in this section (Online Methods).  44 

 45 
Body Mass Index (BMI) 46 
 47 



rs2481665 (INADL): There are seven genes within the 500kb region of the lead SNP rs2481665 on 48 
chromosome 1. These genes are INADL, L1TD1, KANK4, USP1, DOCK7, TM2D1, and ANGPTL3. The lead 49 

SNP is in intron (#15) of the INADL (InaD-Like) gene. INADL encodes the protein Palsi1-Associated Tight 50 
Junction (PATJ), which helps regulate the formation of tight junctions, and is involved in the processes of 51 

cell polarization and directional migration of epithelial cells3,4. A GWAS study (n= 815) designed to 52 
identify variants associated with childhood obesity in the Hispanic population, found near genome-wide 53 
significant associations between the exonic, non-synonymous SNP rs1056513 in INADL (204 kb 54 

downstream from our lead SNP) and the following fat distribution traits: weight [kg] (EAF[effect allele 55 
frequency]: 0.031, p-value: 1.18 x 10-07); BMI [kg/m2] (EAF: 0.021, p-value: 8.34 x 10-06); fat mass [kg] 56 
(EAF: 0.035, p-value: 1.59 x 10-07); trunk fat mass [kg] (EAF: 0.035, p-value: 2.36 x 10-07); fat free mass 57 

[kg] (EAF: 0.034, p-value: 2.80 x 10-07) and hip circumference (EAF: 0.022, p-value: 2.47 x 10-6).5 The SNP 58 
rs1056513 accounted for 3% of the variance in body weight and body composition5. However, this SNP 59 

is not in LD with the lead SNP rs2481665 in this study (R2<0.2). 60 
 61 
Farther away is the DOCK7 gene, 326 kb downstream from the lead SNP. This gene encodes a guanine 62 

nucleotide exchange factor (GEF) protein that is involved in axon formation and neuronal polarization.  63 
GWAS studies have reported the association of variants located near the DOCK7 gene with lipid levels. A 64 
GWAS study (n= up to 18,554) conducted with individuals of European ancestry identified the 65 

association of rs1213033 with triglycerides (eaf: -0.11, 2 x 10-8)6. Another GWAS meta-analysis found a 66 
genome-wide significant association between rs1168013 and triglycerides in individuals of European 67 

ancestry (n=17,723; eaf: 0.035 (0.007), p-value: 6.4 x 10-8)7. However, authors could not replicate this 68 
finding in other study samples consisting of 37,774 Europeans and 9,665 individuals of Indian Asian 69 
ethnicity. A GWAS replication study assessing the association between 15 SNPs and blood lipid and 70 

lipoprotein concentrations in individuals of Asian descent (n=4638), found a marginal association 71 
between the variant rs10889353, located in the intronic region of DOCK7, and triglycerides (eaf: -0.08, p-72 
value: 6.5 x 10-04)8. None of the variants from the different GWAS studies discussed above are in LD with 73 

SNP rs2481665 (R2<0.2). 74 
 75 

TM2D1 is another gene in the 500kb area that is 404 kb upstream from rs2481665. This gene encodes a 76 
beta-amyloid peptide-binding protein (BBP), which is involved in neural death and in the decrease of 77 
cognitive skills that occurs in Alzheimer’s disease. This protein may be targeted by the beta-amyloid 78 

peptide which has been linked to the formation of plaques resulting in neurotoxicity in Alzheimer’s 79 
disease9. The APP, the precursor of beta-amyloid peptide, is expressed in adipose tissue and its 80 

expression is up-regulated in obesity10,11. 81 
 82 
ANGPTL3 (Angiopoietin-Like 3) is 469 kb upstream from the lead SNP, and upstream of the DOCK7 gene. 83 

ANGPTL3 encodes a protein that plays a role in angiogenesis. This protein is expressed mostly in the 84 
liver. Mutations in this gene lead to the disease familial hypobetalipoproteinemia type 2 (FHBL2), which 85 
causes low levels of apolipoprotein B (apoB), total cholesterol, low-density lipoprotein (LDL) cholesterol 86 

and high density lipoprotein cholesterol 12. Several genetic association studies suggest that ANGPTL3 has 87 
a role in regulating plasma lipoprotein metabolism6,8,13,14. A few single-nucleotide polymorphisms, near 88 

the ANGPTL3 gene, have been associated with lower triglyceride: rs1213033, rs213192, rs120423196.  89 
One of these, rs1213033, is also near the DOCK7 gene6.  90 
 91 

There are several nearby genes with no documented role in adiposity or related cardiometabolic traits.  92 
Including, L1TD1 (Line-1 type transposase domain containing 1) located 66 kb upstream from the lead 93 
SNP. L1TD1 encodes the protein ES Cell-Associated Protein 11, a RNA-binding protein that plays a role in 94 

maintaining the pluripotency of stem cells, and in the proliferation of cancer cells15,16. Also, KANK4 (KN 95 



motif and ankyrin repeat domains 4) is a gene located 107 kb downstream from our SNP of interest. It 96 
encodes the protein Ankyrin Repeat Domain 38, a member of the Kank family of proteins, which are 97 

involved in the control of cytoskeleton microfilaments by regulating the polymerization of actin. The 98 
Kank gene is a tumor suppressor in renal cell carcinoma17. USP1, 307 kb upstream from rs2481665, 99 

encodes a protein that cleaves ubiquitin, a peptide that is added to proteins to signal them for 100 
degradation, or modification of their cellular location or enzymatic activity.  101 
  102 

The intronic rs2481665 variant does not seem to have a functional role (Score 4 in RegulomeDB18). Two 103 
eQTLs were found for rs2481665 (Gene: L1TD1, p-value: 2.1 x 10-7, EAF: -0.73, tissue: brain-cerebellum) 104 
and (Gene: INALD, p-value: 4.0 x 10-6, EAF: 0.29, tissue: heart-atrial appendage).  105 

 106 
rs10929925 (LOC400940): LOC400940 and SOX11 are the two genes on Chr2 that are within 500 kb of 107 

the lead SNP rs10929925. SNP rs10929925 is downstream of LOC400940, the nearest gene, a non-108 
coding RNA gene that remains uncharacterized. The variant is also 314 kb downstream from SOX11, a 109 
gene without introns that encodes a transcription factor that is part of the SOX (SRY-related HMG-box) 110 

family. This family of transcription factors is involved with processes that regulate embryonic 111 
development and cell fate19. One study has proposed that SOX11 has a role in brain development after 112 
observing that mutations in the gene may lead to microcephaly, developmental delays and other 113 

features found in mild Coffin-Siris Syndrome, a genetic disorder that causes developmental delays20. A 114 
recent GWAS meta-analysis study of fat distribution, which included 224,459 individuals of European 115 

and non-European ancestry, identified a genome wide significant association (p=4.5 x 10 -8) between 116 
rs10929925 and hip circumference unadjusted for BMI 2. Based on a literature review, the study 117 
identified SOX11 as the best candidate gene for rs10929925.2 118 

 119 
There is no available information regarding the potential regulatory role of the lead SNP 120 
(RegulomeDB18). But there is evidence of an eQTL, although it does not reach 5% FDR (Gene: SOX11, P-121 

value: 8.7 x 10-6, Effect size: 0.39, Tissue: thyroid). In brain tissue, the SNP altered the TATA box motif of 122 
the DIx3 gene a homeodomain gene (HaploReg21).  123 

 124 
rs6794880 (SRRM1P2): The 500kb region around the lead SNP, rs6794880, does not show the presence 125 
of any protein coding genes. The nearest genomic feature to rs6794880 is SRRM1P2, a pseudogene, 126 

named the serine/arginine repetitive matrix 1 pseudogene 2. Upstream rs6794880 is LINC00971, a long 127 
intergenic non-protein coding RNA gene that remains uncharacterized.  128 

 129 
There is no evidence that the lead SNP rs6794880 has a functional/regulatory role (Score 6 in 130 
RegulomeDB18) in the genome. Additionally, there are no reports of eQTLs for this variant. 131 

 132 
rs12629427 (EPHA3): There is only one gene found within 500kb of the peak signal, rs12629427. EPHA3 133 
(EPH receptor A3) is 11kb downstream from rs12629427, and is a member of the ephrin receptor 134 

subfamily of the protein-tyrosine kinase family. EPH and EPH-related receptors have been implicated in 135 
mediating developmental events, particularly in the nervous system. This gene encodes a protein that 136 

binds ephrin-A ligands. EPHA3 has been implicated in the pathogenesis of lung cancer22-26. The SNP 137 
rs12629427 has a score of 6 in RegulomeDB18 (minimal binding evidence). No significant eQTLs were 138 
found for rs12629427 and no GWAS hits were identified within the 1MB region of the lead SNP. 139 

 140 
rs2173039 (EPHA3): There is only one gene found within 500kb of rs2173039, which is 14.5kb upstream 141 
from EPHA3 (EPH receptor A3). See rs12629427 above. 142 

 143 



rs13069244 (CCDC39): A total of 4 genes are found within 500kb of the lead marker, rs13069244. 144 
CCDC39 (coiled-coil domain containing 39) is located 43.88kb downstream from the lead marker and 145 

encodes a protein involved in the motility of cilia and flagella. Defects in this gene cause primary ciliary 146 
dyskinesia type 14. Lung disease was worse in those with IDA/CA/MTD ultrastructural defects, most of 147 

whom had biallelic mutations in CCDC3927. FXR1 (fragile X mental retardation, autosomal homolog 1) is 148 
located 189kb downstream from rs13069244, and codes for an RNA binding protein that shuttles 149 
between the nucleus and cytoplasm, and is associated with polyribosomes, predominantly with the 60S 150 

ribosomal subunit. Deregulation of FXR protein 1 by the lipodystrophic lamin A p.R482W mutation elicits 151 
a myogenic gene expression program in preadipocytes28. DNAJC19 (DnaJ (Hsp40) homolog, subfamily C, 152 
member 19), located 260kb upstream from our lead marker, encodes a protein involved in the ATP-153 

dependent transport of transit peptide-containing proteins from the inner cell membrane to the 154 
mitochondrial matrix. Defects in this gene are a cause of 3-methylglutaconic aciduria type 5 (MGA5), 155 

also known as dilated cardiomyopathy with ataxia (DCMA)29-31. The loss of DNAJC19/PHB complexes 156 
affects cardiolipin acylation and leads to the accumulation of cardiolipin species with altered acyl 157 
chains32. There is no evidence that rs13069244 has a functional/regulatory role (RegulomeDB18 Score 6: 158 

minimal binding evidence) in the genome. No GWAS hits were identified within the 1Mb region of 159 
rs13069244 and no report of eQTL for the variant. 160 
 161 

rs336396 (INPP4B): There are two genes found within 500kb of rs336396. The SNP lies within INPP4B 162 
(inositol polyphosphate-4-phosphatase, type II, 105kDa), which encodes inositol polyphosphate 4-163 

phosphatase type II, one of the enzymes involved in phosphatidylinositol signaling pathways. INPP4B has 164 
been identified as a tumor suppressor by negatively regulating normal and malignant cell proliferation 165 
through regulation of the PI3K/Akt signaling pathway33,34. Different residues within the catalytic site of 166 

INPP4B are responsible for activity with lipid and protein substrates35. IL15 (interleukin 15) is located 167 
407kb upstream of rs336396. IL15 encodes a cytokine that regulates T and natural killer (NK) cell 168 
activation and proliferation. This cytokine may act as an antagonist to IL2, which binds common 169 

hematopoietin receptor subunits, and may compete for the same receptor. This cytokine induces the 170 
activation of JAK kinases, as well as the phosphorylation and activation of transcription activators STAT3, 171 

STAT5, and STAT6. Murine models show that this cytokine may increase expression of apoptosis 172 
inhibitor BCL2L1/BCL-x(L), possibly through the transcription activation activity of STAT6, and thus 173 
prevent apoptosis. Cigarette smoke compromises IL-15 production – and as a result NK cell function – 174 

which could link to the higher incidence of cancers or viral infections observed among smokers36. A 175 
group of SNPs, upstream from IL15, were associated with both smoking status and quantity of cigarette 176 

consumption37. No data was provided for rs336396 by RegulomeDB18. No GWAS hits were identified 177 
within the 1Mb region of rs336396 and no report of an eQTL for the variant. 178 
 179 

rs12902602 (CHRNA5-CHRNA3-CHRNB4): A total of 10 genes are found within 500kb of rs12902602. The 180 
SNP is located 33.81kb upstream of CHRNB4 (cholinergic receptor, nicotinic beta 4). The CHRNA5-181 
CHRNA3-CHRNB4 gene cluster has consistently been associated with smoking quantity and nicotine 182 

dependence38-40, COPD, lung cancer and peripheral artery disease39,41,42, and increased risk of death43.  183 
Variants of CHRNA5-CHRNA3-CHRNB4 have also been associated with lower birth weight from smoking 184 

mothers44, and with lower BMI in current adult smokers45,46, but with lower BMI in never smokers46. The 185 
CHRNA5-CHRNA3-CHRNB4 genes encode the nicotinic acetylcholine receptor (nAChR) subunits α3, α5 186 
and β4 that are expressed in mammalian brain47,48. GWASs have also identified loci at ADAMTS7 (ADAM 187 

metallopeptidase with thrombospondin type 1 motif 7), at 84.14 kb downstream from the leader SNP 188 
rs12902602, associated with coronary artery disease and its risk factors49-52.  189 
 190 



Waist Circumference adjusted for BMI (WCADJBMI): 191 
rs17396340 (KIF1B). A total of 10 genes are found within 500kb of the lead marker, rs17396340, which 192 

is intronic to KIF1B. We highlight four genes in the region here. KIF1B is involved in synaptic vesicle and 193 
mitochondrial transport, and may play a critical role in the development of hepatocellular carcinoma53.  194 

6PGD codes for an oxidative carboxylase responsible for reduction of 6-phosphogluconate. Cells lacking 195 
6PGD appear to metabolize glucose as an inhibitor to induce senescence54. RBP7 is involved in 196 
carotenoid metabolism. In avian model organisms, the RBP7 promoter is important in regulating 197 

expression of several genes in adipose tissue at later developmental stages55. Nicotinamide 198 
mononucleotide adenylyltransferease (NMNAT) reversibly catalyzes the important step in the 199 
biosynthesis of NAD from ATP and NMN. NAD and NADP are used reversibly in anabolic and catabolic 200 

reactions. NAD is necessary for cell survival in oxidative stress and DNA damage. The top SNP, 201 
rs17396340, is associated with the expression levels of ARSA (p-value of 6.0e-05) at LCL tissue in Homo 202 

sapiens. Human adipocytes express functional DAR (Dopamine receptors) and ARSA, suggesting a 203 
regulatory role for peripheral dopamine in adipose functions56. It is speculated that the propensity of 204 
some DAR-activating antipsychotics to increase weight and alter metabolic homeostasis is due to their 205 

direct action on adipose tissue. Our lead SNP is also associated with mean platelet volume57. From 206 
HaploReg21, the lead SNP, rs17396340, is annotated as KIF1B in GENCODE, and is functionally annotated 207 
as intronic. This lead SNP is associated with enhancer histone marks in 9 tissues; associated with 208 

regulatory motifs at GATA and Hoxa5; and with cis-eQTLs from various tissues (cells transformed 209 
fibroblasts, muscle skeletal, lymphoblastoid EUR exonlevel, lymphoblastoid EUR genelevel, and whole 210 

blood). The RegulomeDB18 score for the lead SNP is 4. 211 
 212 
rs6743226 (HDLBP). A total of 10 genes are found within 500kb of our lead marker, rs6743226. Three, of 213 

biological interest, are mentioned here. Our lead SNP, rs6743226, is intronic to HDLBP, which codes for a 214 
protein that binds high density lipoprotein (HDL) that functions to regulate excess cholesterol levels in 215 
cells.  216 

 217 
STK25 codes for a serine/threonine kinase with important functions in the Golgi apparatus. This gene 218 

has been associated with severe hypoxia58 and pseudohypoparathyroidism, symptoms of which include 219 
short stature and obesity59. Significantly higher serine/threonine kinase 25 (STK25) levels were observed 220 
in the skeletal muscle of type 2 diabetic patients, compared with individuals with normal glucose 221 

tolerance60. The overexpression of STK25 in conditions of excess dietary fuels associates with a shift in 222 
the metabolic balance in peripheral tissues from lipid oxidation to storage, leading to a systemic insulin 223 

resistance61.  224 
 225 
Expression of PAS domain containing serine/threonine kinase (PASK) is regulated by glucose and the 226 

encoded protein plays a role in the regulation of insulin gene expression. Down regulation of this gene 227 
may play a role in type 2 diabetes62-64. Far2 and Stk25 are candidate genes for the HDL cholesterol locus 228 
in mice65. The top SNP, rs6743226, is associated with the expression of B-cell CLL/lymphoma 10 (BCL10). 229 

The protein encoded by the gene BCL10 contains a caspase recruitment domain (CARD), and induce 230 
apoptosis and to activate NF-kappaB MALT1 and this protein are thought to synergize in the activation 231 

of NF-kappaB, and the deregulation of either of them may contribute to the same pathogenetic process 232 
that leads to the malignancy66.  233 
 234 

There is no GWAS signal nearby the lead SNP rs6743226. This lead SNP is associated with enhancer 235 
histone marks in 4 tissues; associated with regulatory motifs changed at Goxa and TCF12; and with eQTL 236 
from various tissues including adipose subcutaneous, lung, and muscle tissues. The RegulomeDB18 score 237 

for the lead SNP is 6. 238 



  239 
rs4378999 (DOCK3): A total of 4 genes are found near our lead marker, rs4378999, DOCK3, MANF, 240 

VPRBP, and RBM15B. Our lead variant is intronic to DOCK3 (dedicator of cytokinesis 3), which is highly 241 
expressed in the central nervous system and like previously identified obesity related genes, is involved 242 

in neurite outgrowth downstream of BDNF-TrkB67. MANF (mesencephalic astrocyte-derived 243 
neurotrophic factor) is an endoplasmic reticulum protein that acts to protect ER in response to 244 
cellular/organismal stress 68, for example, expression is increased in skeletal muscle of the leg in rats in 245 

response to exercise 69. Further, recent evidence shows that MANF may be an important factor in the 246 
protection of pancreatic beta cells and disruption of MANF expression can lead to diabetes 68. There is 247 
very little known about VPRBP, and RBM15B. 248 

 249 
Genome-wide association studies have reported the association within 1MB region of lead SNPs for 250 

height (R2=0.35)70,71 and melanoma (R2=0.48)72. Our lead SNP is associated with regulatory motifs 251 
changed at Cdx2; and with eQTL from various tissues including adipose subcutaneous, and muscle 252 
skeletal. The lead SNP is associated eQTL in esophagus muscularis tissue based on  GTEx73 lookup. GWAS 253 

studies have report the association within 1Mb of lead SNP for height (R2=0.38)71, and fibrinogen 254 
(R2=0.41)74. The RegulomeDB18 does not have data for lead SNP rs4378999. 255 
 256 

rs7697556 (ADAMTS3): One gene is found within 500kb of our lead marker, rs7697556. ADAM 257 
metallopeptidase with thrombospondin type 1 motif, 3 (ADAMTS3) is located 80 kb upstream of our 258 

variant, rs7697556. While there is no established role for ADAMTS3 in obesity-related traits, there are a 259 
number of variants within and near this gene associated with relate anthropometric and 260 
cardiometabolic traits, including height70,71, lipid metabolism75, and metabolites76. From There is no 261 

score assigned for our lead SNP in the RegulomeDB18. 262 
 263 
rs10269774 (CDK6): A total of 10 genes are found within 500 kb of the lead marker, rs10269774. The 264 

SNP is located within an intron in cyclin-dependent kinase 6 (CDK6). CDK family members are important 265 
regulators of cell cycle progression. GWAS have reported associations between CDK6 variants with 266 

height70,71,77-81. The CDK6-rs2282978 associated with height is in complete LD with our lead marker 267 
(rs10269774: R2=1, D’=1). Also, GWAS identified associations between CDK6 variants with white blood 268 
cell counts82 and rheumatoid arthritis83,84. CDK6 rs42041 is associated with juvenile idiopathic arthritis 269 

(JIA)85, and patients with JIA are significantly shorter and more often overweight or obese than 270 
controls86. Research suggests that the microRNA-103a-3p controls proliferation and osteogenic 271 

differentiation of human adipose tissue-derived stromal cells by binding to specific target sequences in 272 
the CDK6 mRNA 3’-untranslated region87. Another study in the human placental transcriptome found 273 
that CDK6 mRNA levels correlated with offspring birth weight and birth weight percentiles88. 274 

 275 
rs10269774 is located in enhancer regions (H3K4Me1 and H3K27ac) with histone modification 276 
enrichment in mammary epithelial tissue and lymphoblastoid cell lines. rs10269774 was suggested to 277 

have cis-acting associations with five gamma-glutamyltransferase (GGT) family gene expression in 278 
lymphoblastoid of Yoruba population (p=6E−0589). Elevated serum GGT is associated with waist 279 

circumference90,91, BMI91, visceral fat area91, triglyceride levels91, metabolic syndrome90,92, coronary 280 
artery calcification93 and biomarkers of atherosclerosis94, arterial stiffness95,96, incident CVD and death92.  281 
rs10269774 is located near to several transcription factor binding sites (CTCF, EP300, JUN, POLR2A, FOS, 282 

NFIC, and RFX5, among others).  283 
 284 
rs9409082 and rs9408815 (TMEM38B): A total of 3 genes are found within 500 kb of the lead markers 285 

rs9409082 and rs9408815. At 364 kb downstream of rs9409082 is located TMEM38B (transmembrane 286 



protein 38B, 9q31.2) gene, which encodes an intracellular monovalent cation channel that functions in 287 
maintenance of intracellular calcium release. Deletions in TMEM38B are associated with autosomal 288 

recessive osteogenesis imperfecta97-99. There is evidence of genome-wide association between 289 
rs9409082 with height70. Also, GWAS have reported several variants in this region associated with age at 290 

menarche100-102, which is a risk factor to develop obesity, type 2 diabetes, cardiovascular disease, breast 291 
cancer and all-cause mortality101. However, the reported variants for age at menarche are in low-to-292 
moderate LD (0.005 <R2 <0.68) with our lead marker from Approach 1, rs9409082. Variants on 9q31, in 293 

low LD with rs9409082, have shown suggestive association with visceral adipose to subcutaneous 294 
adipose ratio in men (R2=0.161)103 and with a protein quantitative trait locus modulating cellular 295 
response to chemotherapy (R2=0.002)104.  296 

 297 
At 497.6 kb downstream of rs9409082 is the FKTN (fukutin, 9q31.2) gene that encodes a putative 298 

transmembrane protein of the cis-Golgi compartment. FKTN protein may be involved in the 299 
glycosylation of alpha-dystroglycan in skeletal muscle. Mutations in FKTN have shown association with 300 
congenital muscular dystrophy105,106. No significant eQTLs were found for SNP rs9409082 (GTEx73, 301 

SNIPPER, RegulomeDB18, and HaploReg21).  302 
 303 
rs6012558 (ARFGEF2): A total of 11 genes are found within 500kb +/- of our lead SNP, rs6012558, which 304 

is 6,989 bp upstream of ARFGEF2 (ADP-ribosylation factor guanine nucleotide-exchange factor 2).  305 
ARFGEF2’s primary function involves intracellular trafficking. Our lead variant is 86,866 bp upstream of 306 

PREX1 (phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor 1), a gene which 307 
encodes a protein involved in intraceullar signaling, lipid and protein binding, and regulation of GTPase 308 
activity 107-109. PREX1 is primarily expressed in the blood leukocytes and brain107. Recent mouse models 309 

indicate that PREX1 may be important for the regulation of thermogenic potential of brown adipose 310 
tissue and white preadipocytes, making this gene very important for energy expenditure110. Additionally, 311 
rs6012558 is a significant (<5% FDR) cis-acting expression quantitative trait locus (cis-eQTL) for ARFGEF2 312 

(subcutaneous adipose and sigmoid colon tissues), CSE1L (artery, thyroid, subcutaneous adipose, 313 
esophagus mucosa, and skeletal muscle tissues), and STAU1 (transformed fibroblast cells) (GTEx73).  314 

Additional evidence that this variant lies in a potentially important regulatory reg ion includes a 315 
RegulomeDB18 score of 4 18, it is nearby (<500kb +/- and R2>0.7) other variants that rest in active 316 
enhancers for ARFGEF2, other cis-eQTLs for ARFGEF2 (monocytes, whole blood, cerebellum, and 317 

temporal cortex), DDX27 (monocytes), C2orf199 (monocytes), CSE1L (whole blood), and PREX1 318 
(Cerebellum and Temporal Cortex) (HaploReg21 and UCSC Browser111). Our lead SNP is within 500kb +/- 319 

of several previously identified GWAS SNPs for multiple traits, the nearest of which is rs6012564 320 
associated with tendency toward anger (distance=10kb)112; however, all of these are in low LD with 321 
rs6012558 (R2<0.3).  322 

 323 
rs4141488 (GRIN2A): There are only two genes within 500 kb +/- of our lead SNP, rs4141488, which lies 324 
218 kb downstream of GRIN2A (glutamate receptor, ionotropic, N-methyl D-aspartate 2A). The primary 325 

function of GRIN2A is to assist in controlling long-term memory and learning through regulation and 326 
efficiency of synaptic transmission. These receptors are essentially the gateway for calcium into post-327 

synaptic cells113. Variants in this gene have been associated with various forms of epilepsy, sleep 328 
patterns, delayed psychomotor development, speech difficulties, seizures, mental retardation, and 329 
various mental disorders, including heroin addiction114-120. The only other gene within 500 kb of 330 

rs4141488 is C16orf72; little is known about the function of this gene. While  GTEx73 revealed no 331 
significant eQTLs nearby our lead variant, there is some evidence that this locus may lie within an 332 
important regulatory region. RegulomeDB18 provided a score of 5 (minimal binding evidence) for 333 

rs4141488. Additionally, HaploReg21 and UCSC browser show that our lead SNP and variants in high LD 334 



(R2>0.7) are within active enhancer regions for several tissues, including liver, fetal leg muscle, smooth 335 
stomach and intestinal muscle, cortex, and several embryonic and pluripotent cell types; and within 336 

altered binding motifs for EWSR1-FLI1, Elf3, STAT, CDP, HNF1, and SOX. Our lead SNP is within 500kb +/- 337 
of several previously identified GWAS SNPs for multiple traits, the nearest of which is rs17550532 338 

associated with sudden cardiac arrest121. Other associations in this region include behavioral 339 
disinhibition122, venous thromboembolism123, and Transforming Growth Factor-β1 5; however, all of 340 
these are in low LD with rs4141488 (R2<0.4). 341 

 342 
rs1545348 (RAI14): Our lead SNP, rs1545348, lies within the intron of RAI14 (Retinoic Acid Induced 14), 343 
although very little is known about the function of this gene in humans. There are four additional genes 344 

within 500 kb+/- of rs1545348, including RAD1 (RAD1 checkpoint DNA exonuclease) 187 kb upstream. 345 
RAD1 encodes a protein involved in stopping the cell cycle in response to DNA damage, as well as 346 

recruiting other proteins responsible for DNA repair124,125, including in response to stress caused by 347 
cigarette smoke126. There is strong evidence of a regulatory role within the region surrounding our lead 348 
variant (RegulomeDB18 score 4, minimal binding evidence). One significant (beta=-0.28, P=5.3E-6) eQTL 349 

between rs1545348 and TTC23L was found in sun exposed skin tissue (lower leg) (GTEx73). Additionally, 350 
HaploReg21 and the UCSC browser reveal that the region surrounding our lead variant (+/- 500 kb, 351 
R2>0.7) harbors marks of open and active chromatin and DNase hypersensitive regions across multiple 352 

tissues, including cancer, pluripotent, and normal tissue, brain and adipose tissue among others. Traits 353 
with nearby GWAS associations include several metabolite markers and left ventricular mass, although 354 

each of these associations are in low LD with rs1545348127-131. 355 
 356 
rs6470765 (GSDMC): There are three genes within 500 kb +/- of our lead SNP, rs6470765, which lies 357 

within an intron of GSDMC (gasdermin C). There is very little known about the function of GSDMC. Our 358 
lead SNP also lies 80 kb downstream of FAM49B (family with sequence similarity 49, member B). Similar 359 
to CDK6, a gene nearby another one of our novel variants, rs10269774, FAM49B is a target of BACH1 360 

transcription factor, which is involved in cellular response to oxidative stress and management of the 361 
cell cycle132. Also, ASAP1 (ArfGAP With SH3 Domain, Ankyrin Repeat And PH Domain 1), a gene located 362 

328 kb upstream of our association signal, may be involved in the differentiation of fibroblasts into 363 
adipocytes133. There is moderate evidence for the functional role of lead variant in regulation of gene 364 
expression (RegulomeDB18 score of 6: minimal binding evidence). However, the  GTEx73 database 365 

indicates that rs6470765 is a significant eQTL for GSDMC in skeletal muscle, sun-exposed skin, and 366 
mucous in the esophagus. Furthermore, HaploReg21 and the UCSC Browser highlight moderate evidence 367 

for regulatory elements in high LD >0.9, including DNAse hypersentive regions, and active enhancer and 368 
promotor regions in >20 tissue types (e.g. lung, adipose, skeletal muscle, epidermal and esophageal 369 
tissues, and many stem/pluripotent cell types). Our lead variant is within several altered binding sites for 370 

FOX1, FOX2 and SOX. Last, our lead SNP is in high LD with other potential cis-eQTLs for GSDMC. Nearby 371 
associations with other traits include height, hip circumference adjusted for BMI, and inflammatory 372 
bowel disorder2,70,71,134. 373 

 374 
rs6076699 (PRNP): There are seven genes within 500 kb+/- of our lead SNP, rs6076699. The lead SNP is 375 

100kb upstream of PRNP (prion protein) is likely a signaling transducer involved in multiple biological 376 
processes related to nervous system, immune system, and general cellular functions135-138. Mutations in 377 
the repeat region as well as elsewhere in this gene have been associated with Creutzfeldt-Jakob disease, 378 

fatal familial insomnia, Gerstmann-Straussler disease, Huntington disease-like 1, and kuru 139-145. 379 
 380 
Alternate forms of the oligmers have been shown to form in response to oxidative stress caused by 381 

copper exposure146. Copper is present in cigarette smoke and elevated in serum of smokers, but is not 382 



outside of safe ranges according the U.S. Centers for Disease Control and Prevention, National Center 383 
for Chronic Disease Prevention and Health Promotion, and Office on Smoking and Health147,148. Our lead 384 

SNP is 136 kb upstream from a related gene, PRND (prion protein 2), which is biochemically and 385 
structurally similar to PRNP149. Like PRNP, mutations in this gene may also be involved in neurocognitive 386 

disorders, although there are only weak associations150,151. A third prion protein (testes specific, PRNT) is 387 
found 145 kb away from our lead SNP; however no much is known about the function of this gene. 388 
Other nearby genes include SLC23A2 (Solute Carrier Family 23 [Ascorbic Acid Transporter], Member 2), 389 

ADRA1D (Adrenoceptor Alpha 1D), SMOX (Spermine Oxidase), and RASSF2 (Ras association [RalGDS/AF-390 
6] domain family member 2).  SLC23A2 is essential for the uptake and transport of Vitamin C, which is an 391 
important nutrient for DNA and cellular repair in response to oxidative stress both directly and through 392 

supporting the repair of Vitamin E after exposure to oxidative agents152-155. Furthermore, this region is 393 
associated with success in smoking cessation and is implicated in addictive behaviors in general156,157. 394 

Nearby GWAS-identified associations include preeclampsia, and height70,71,158. There is little evidence 395 
that our association signal is involved in regulation of gene expression (RegulomeDB18 score-5: minimal 396 
binding evidence) 18. While our tag SNP is located within an active enha ncer region (open chromatin 397 

marks, DNAse hypersentivity, and several transcription factor binding motifs), this activity appears tissue 398 
specific (sex-specific tissues and lungs)21,111. There are no other significant regulatory elements in high LD 399 
with rs607669921,73. 400 

 401 
Waist-to-Hip Ratio adjusted for BMI (WHRadjBMI) 402 

rs670752 (BBX): There are only three genes within 500 kb+/- of our lead SNP, rs670752, which lies 403 
within an intron of BBX (Bobby Sox Homolog [Drosophila]). While there is little known about the 404 
function of BBX, another nearby intronic variant, rs6437740, has been associated with smoking behavior 405 

in a previous GWAS159. Other nearby genes include CCDC54 (coiled-coil domain containing 54) and CD47 406 
(CD47 molecule). Much is known about the function of CD47 due to mouse models. CD47 encodes a cell 407 
surface antigen involved in immune response to bacteria, cell adhesion, inflammatory response, and cell 408 

to cell signaling160-162. CD47 expression is significantly decreased in obese individuals and negatively 409 
correlated with BMI, WC, and HIP in RBC 163. 410 

 411 
Conversely, in mouse models, CD47 deficient mice show decreased weight gain on high fat diets, 412 
increased energy expenditure, improved glucose profile, and decreased inflammation164. Our lead SNP, 413 

rs670752, has a score of 6 (very little binding evidence) in RegulomeDB18 and no significant eQTLs were 414 
identified in  GTEx73. However, our tag SNP was identified as a significant eQTL for BBX in brain tissue in 415 

HaploReg21, Additionally, multiple SNPs in high LD with rs670752 provide several lines of evidence for  416 
nearby regulatory elements (e.g. active promoters, transcription factor binding motifs, strong and 417 
poised enhancers), mostly in pluripotent and embryonic cell lines, but also blood cell lines and brain 418 

tissue21,111. 419 
 420 
rs589428 (EHMT2). A total of seventy-seven genes are found near our lead SNP, rs589428, which is 421 

intronic within EHMT2 (Euchromatic Histone-Lysine N-Methyltransferase 2). EHMT2 encodes a histone 422 
methyltransferase, a group of genes involved in repression of transcription through the regulation of 423 

chromatin state 165. The lead SNP is 302kb downstream of TNF. In patients with end-stage renal disease 424 
(ESRD) on long-term hemodialysis (HD), the SNP in the promoter region of the IL-6 and TNF-alpha, and 425 
IL-10, show a strong association with indices of comorbidity and function, and biological and nutritional 426 

markers166. TNF-alpha promotes bone loss and inhibits bone formation and has an important role as a 427 
mediator of skeletal damage in inflammatory arthritis167-170. TNF is the master regulator of other 428 
inflammatory cytokines and the major cytokine in the pathogenesis of chronic inflammatory disease171.  429 

TNF-alpha exerts an important influence on adipose tissue metabolism and function. It inhibits the 430 



expression of two major adipose tissue differentiation regulators: CCAAT and PPARγ-2 172. TNF-alpha 431 
promoter methylation levels could be involved in the susceptibility to stroke173 and correlates with 432 

increased risk of coronary artery disease174. The risk of early childhood wheeze associated with early 433 
maternal smoking may be modified by TNF175. The lead SNP is also 287kb upstream of NCR3, which is 434 

associated with pulmonary function176.  435 
 436 
The top SNP is 17.5kb upstream of NEU1 (Sialidase 1 (Lysosomal Sialidase)). The activity of NEU1 is 437 

higher in epididymal fat and lower in the livers of two strains of obese and diabetic mice. Fluctuations in 438 
NEU1 activity might be associated with the pathological status of these tissues in obesity177. The lead 439 
SNP is 50kb downstream of HSPA1B. Functional HSPA1B  variants are associated with lung cancer risk 440 

and survival178. The top SNP is 65kb upstream of CFB. Increased concentrations of circulating binding 441 
factors fH and fB in subjects with altered glucose tolerance could reflect increased SVC-induced 442 

activation of the alternative pathway of the complement in omental adipose tissue linked to insulin 443 
resistance and metabolic disturbances179. The top SNP is 91kb upstream of STK19, which has been 444 
reported to be a pleiotropic gene for metabolic syndrome and inflammation and is associated with TG, 445 

BMI, WAIST, SBP and inflammatory markers including plasminogen activator inhibitor 1 (PAI -1) and 446 
white blood cell count (WBCC)180. Our top snp is 102kb upstream of C4A, which was identified as novel 447 
potential adipokine candidate regulator of obesity and adipose regions 181 between visceral and 448 

subcutaneous adipose tissue. The Top SNP is 102kb upstream of C4B. The carriers of C4B*Q0 (silent 449 
allele for the C4B gene) have a substantially increased risk to suffer from myocardial  infarction or stroke. 450 

Compared to controls, C4B*Q0 carrier frequency was significantly higher at diagnosis in Icelandic 451 
smokers with angina pectoris (AP) or acute myocardial infarction (AMI) and Hungarian smokers with 452 
severe coronary artery disease, while no such difference was seen in nonsmokers. These findings 453 

indicate that C4B*Q0 genotype can be considered as a major covariate of smoking in precipitating the 454 
risk for AMI and associated mortality182. The top SNP is 150kb upstream of DDAH2 in which SNP 455 
rs9267551 may confer increased risk for type 2 diabetes by affecting insulin sensitivity through 456 

increased asymmetric dimethylarginine (ADMA) levels 183,184. 457 
  458 

Our top SNP is 222kb downstream of APOM. The PCSK9 pathway contributes to plasma apoM regulation 459 
in humans and the influence of PCSK9 on circulating apoM appears to be modified by adiposity 185. In 460 
addition, APOM expression is related to FEV1/FVC (forced expiratory volume 1/ forced vital capacity) 461 

ratio and per cent emphysema 186. The top SNP is 261kb downstream of AGER/RAGE. The lower level of 462 
soluble RAGE/AGER is associated with a number of components of metabolic syndrome (central obesity, 463 

hypertension, and hyperglycemia) 187. Soluble RAGE is inversely associated with pancreatic cancer risk 464 
among Finnish male smokers 188. The RAGE(2) haplotype is associated with diabetic nephropathy (DN) in 465 
type 2 diabetics and with earlier DN onset and, thus, can be regarded a marker for DN 189. RAGE, via its 466 

interaction with ligands, serves as a cofactor exacerbating diabetic vascular disease 190. Serum 467 
endogenous secretory RAGE (esRAGE) levels were inversely correlated with BMI and serum HDL-468 
cholesterol191. In healthy subjects plasma levels of sRAGE were negatively correlated with BMI and 469 

waist/hip ratio supporting a possible protective role for these proteins before any evidence of diabetic 470 
or vascular complications192.  471 

 472 
The top SNP is 263 downstream of AIF1. The serum AIF-1 concentrations were positively correlated with 473 
levels of fasting plasma glucose, hemoglobin A1c, triglycerides, and uric acid, and with WC and BMI, and 474 

were inversely correlated with HDL cholesterol levels193. Also, the variants in AIF1 show evidence of 475 
association with adult obesity in the Greek population194. The top SNP is 306 downstream of LTA. SNPs 476 
in LTA are associated with chronic kidney disease in Type 2 diabetes195. The variability of LT-alpha 477 



genotypes may have potential implications for individual susceptibility to asthma in atopic or in ever-478 
smoking Chinese adults in Hong Kong196.  479 

 480 
The genome-wide association studies have reported the associations within 1Mb of region for age at 481 

menopause (R2=0.32)197, telomere length (R2=0.22)198, idiopathic membranous nephropathy199 (R2=0.45), 482 
chronic hepatitis B infection200 (R2= 0.45) and phospholipid levels (plasma) (R2=0.23)201. This lead SNP is 483 
associated with regulatory motifs changed at Bcl6b, NF-kappaB, Pou5f1; associated with enhancer 484 

histone marks in stomach mucosa, HSMM cell derived skeletal muscle myotubes cell tissue; and in eQTL 485 
in various tissues including subcutaneous adipose, visceral omentum, lung and skeletal muscle tissues. 486 
The lead SNP is associated with eQTL in tibial artery and blood tissues from  GTEx73 analysis. The 487 

RegulomeDB18 score for the lead SNP is 1f. 488 
 489 

rs1856293 (EYA4): A total of nine genes are found near our lead SNP, rs1856293. The lead SNP is 342kb 490 
downstream of RPS12. RPS12 is a potential target gene of microRNA-377, which has been consistently 491 
upregulated in in vitro diabetic nephropathy (DN) models and in in vivo DN mouse models202. If RPS12 is 492 

also upregulated in the diabetic milieu, it may contribute to the progression of DN. RPS12 has been 493 
reported to be a strong candidate for diabetic nephropathy203. In addition, in the study of E3 rats, there 494 
were significant positive correlations between TG and the expression of RPS12 gene204. The lead SNP is 495 

83kb upstream of EYA4. Serum methylation levels of EYA4 were significant discriminants between stage 496 
I colorectal cancer and healthy controls 205 and high methylation of the EYA4 gene is associated with 497 

ulcerative colitis with colorectal cancer206. The lead SNP is 446kb upstream of VNN1. Alternative splicing 498 
in VNN1 is associated with colorectal cancer207. The combination of VNN1 and MMP9 may be used as a 499 
blood biomarker panel for the discrimination of pancreatic cancer-associated diabetes from type II  500 

diabetes208. There is no reported GWAS signal in high LD with the lead SNP. This lead SNP is associated 501 
with regulatory motifs changed at Esr2, LRH1, Myf_3, Sin3Ak-20_disc3 and T3R; and associated with 502 
enhancer histone marks in ESDR, SKIN and brain tissue. The RegulomeDB18 score for the lead SNP is 6. 503 

 504 
rs2001945 (TRIB1): There are five protein coding genes within 500 kb+/- of our lead SNP, rs2001945, 505 

which lies 27 kb downstream from TRIB1. TRIB1 (tribbles pseudokinase 1) encodes a protein involved in 506 
ATP binding and the MAPK/ERK1/2 pathway209. Very little is known about the function of the other 507 
nearby genes, including NSMCE2 (non-SMC element 2, MMS21 homolog), KIAA0196 (strumpellin), SQLE  508 

(qualene epoxidase), and ZNF572 (Zinc Finger Protein 572).  GTEx73 indentified no significant eQTLs for 509 
our lead SNP; however, RegulomeDB18 provided a score of 4 (minimal binding evidence [Transcription 510 

Factor binding + DNase peak]). Further, HaploReg21/UCSC Genome Browser reveal multiple lines of 511 
evidence across multiple tissues, including cis-eQTLs between rs2001945 for TRIB1 and NSMCE2 in brain 512 
tissue, strong DNAse hypersensitivity clusters both at the association peak and across SNPs in high LD 513 

with our lead SNP, transcription factor binding motifs, and open chromatin marks primarily in Human 514 
Umbilical Vein Endothelial Cells (HUVEC). There are several nearby previously-identified GWAS signals 515 
for related cardiometabolic and digestion-related traits, including lipids (e.g. triglycerides, LDL, 516 

HDL)6,8,13,14,210-217, adiponectin218, liver enzyme levels219, gestational age5, inflammatory bowel disease134, 517 
Crohn’s disease220,221, and metabolite levels222.  518 

 519 
rs17065323 (SMIM2): A total of 6 genes are found within 500 kb of the lead marker, rs17065323. The 520 
SNP rs17065323, which is located 23.19 kb downstream of the long intergenic non-protein coding RNA 521 

284 (LINC00284, 13q14.11), showed suggestive association with uric acid levels (p=8.7E-6, 223). Variants 522 
of the LACC1 (laccase (multicopper oxidoreductase) domain containing 1), at 159.72 downstream of 523 
rs17065323, were genome-wide associated with Crohn’s disease 134,221, and a LACC1 mutant showed 524 

evidence of association with systemic juvenile idiopathic arthritis  224. In addition, GWASs have suggested 525 



associations between variants on 13q14 with response to tocilizumab in rheumatoid arthritis  (p=2E-526 
7225), antineutrophil cytoplasmic antibody-associated vasculitis (p=3E-6226), and myotrophic lateral 527 

sclerosis (p=4E-6, 227), as well as SERP2 genotype-carbohydrate interaction influencing fasting insulin and 528 
homeostasis model assessment of insulin resistance (p=7E-6 and p=5E-6 , respectively 228). The nearest 529 

protein-coding gene to our tag SNP is SMIM2 (Small Integral Membrane Protein 2), located 89.5 kb 530 
upstream; however, very little is known about the function of SMIM2. 531 
 532 

rs1049281 (HLA-C): Eighty-six genes are found within 500kb of rs1049281, which lies within the HLA-C 533 
gene at 6p21.3. HLA-Cencodes an HLA class I heavy chain paralogue found in nearly all cells and 534 
important in the function of the immune system. There is strong evidence that our SNP is in a region 535 

likely to affect binding activity and gene expression in adipose tissue (RegulomeDB18 score 1f). Over 100 536 
alleles of the HLA-C gene have been described, and HLA-C has been associated with risk of various 537 

autoimmune diseases which can influence adiposity, including Type I diabetes, celiac disease, and 538 
psoriatic arthritis 229,230. Our lead SNP is 314569 bp downstream of DPCR1, a gene associated with diffuse 539 
panbronchiolitis, a chronic inflammatory lung disease 231. A variant near this gene (rs9368649), has been 540 

suggestively associated with smoking status (ever somker) and pack years (P~1.3E-07) 232, but not at 541 
GWS. This SNP is not in high LD with our lead SNP (R2=0.152, D’=0.902). Our lead SNP is 190789 bp 542 
upstream of HCP5, a lncRNA. A variant (rs12175489) near this gene was suggestively associated 543 

(p=2.13E-06) with visceral adipose tissue (VAT) in men 103, but this variant is also not in high LD with our 544 
lead SNP (R2=0.022, D’=0.478). Our lead SNP is 336394bp upstream of AIF1, 310030bp downstream of 545 

NCR3, and 341847 upstream of BAT2. Three variants in this region [rs2260000 (R2=0.122, D’=0.526), 546 
rs1077393 (R2=0.114, D’=0.434), and rs2844479 (R2=0.100, D’=0.523) have been previously associated 547 
with variation in weight 233. Another variant near NCR3 (rs2070600) has been previously associated with 548 

ever-smoking and lung function, but is not in high LD with our lead SNP (R2=0.137, D’=0.642) 176,232. Our 549 
lead SNP is 340905bp downstream of VARS2, and a variant near this gene (rs7751505) has been 550 
suggestively associated with height change (P<4.05 x 10-6), though it is not in LD with our top SNP 551 

(R2=0.054, D’=0.569). Two other variants in the region have been previously associated with extremes of 552 
height (p<5E-08), one of which is in strong LD with our lead SNP (rs2247056, 28923bp from rs1049281: 553 

R2=0.814, D’=1.000; rs7741091: R2=0.093, D’=0.652) 77. 554 
 555 
SUPPLEMENTARY NOTE 3. Detailed summary of eQTL methods and results. 556 

 557 
eQTL Methods 558 

We used two approaches to systematically explore the role of novel loci in regulating gene expression. 559 
First, to gain a general overview of the regulatory role of newly identified GWAS regions, we conducted 560 
an eQTL lookup using >50 eQTL studies 234, with specific citations for >100 datasets included in the 561 

current query: 1) Blood cell related eQTL studies included fresh lymphocytes 235, fresh leukocytes 236, 562 
leukocyte samples in individuals with Celiac disease 237, whole blood samples 73,238-256, lymphoblastoid 563 
cell lines (LCL) derived from asthmatic children 257,258, HapMap LCL from 3 populations 259, a separate 564 

study on HapMap CEU LCL 260, additional LCL population samples 261-267,neutrophils 268,269,CD19+ B cells 565 
270, primary PHA-stimulated T cells 261,264, CD4+ T cells 271, peripheral blood monocytes 267,270,272-275, long 566 

non-coding RNAs in monocytes 276 and CD14+ monocytes before and after stimulation with LPS or 567 
interferon-gamma 277, CD11+ dendritic cells before and after Mycobacterium tuberculosis infection 278 568 
and a separate study of dendritic cells before or after stimulation with LPS, influenza or interferon-beta 569 
279. Micro-RNA QTLs 280,281, DNase-I QTLs 282, histone acetylation QTLs 283, and ribosomal occupancy QTLs 570 
284 were also queried for LCL. Splicing QTLs 285 and micro-RNA QTLs 286 were queried in whole blood. 2) 571 
Non-blood cell tissue eQTLs searched included omental and subcutaneous adipose tissues73,238,256,263,287, 572 

visceral adipose tissue 256, stomach 287, endometrial carcinomas 288, ER+ and ER- breast cancer tumor 573 



cells 289, liver 256,287,290-293, osteoblasts 294, intestine 295 and normal and cancerous colon 296,297, skeletal 574 
muscle 256,298, breast tissue (normal and cancer)299,300, lung 73,301-304, skin 73,263,267,305, primary fibroblasts 575 
261,264,306, sputum 307, pancreatic islet cells 308, prostate 309, rectal mucosa 310, arterial wall 256 and heart 576 
tissue from left ventricles 73,311 and left and right atria 312. Micro-RNA QTLs were also queried for gluteal 577 

and abdominal adipose 313 and liver 314. Methylation QTLs were queried in pancreatic islet cells 315.  578 
Further mRNA and micro-RNA QTLs were queried from ER+ invasive breast cancer samples, colon-, 579 
kidney renal clear-, lung- and prostate-adenocarcinoma samples 316; 2 Brain eQTL studies included brain 580 

cortex 252,272,317-319, cerebellar cortex 320, cerebellum 289,318,321-323, frontal cortex 320,321,323, gliomas 324, 581 
hippocampus 320,323, inferior olivary nucleus (from medulla) 320, intralobular white matter 320, occiptal 582 
cortex 320, parietal lobe 322, pons 321, pre-frontal cortex 289,323,325,326, putamen (at the level of anterior 583 

commussure) 320, substantia nigra 320, temporal cortex 318,320,321,323, thalamus 323 and visual cortex 289. 584 
 585 

Additional eQTL data was integrated from online sources including ScanDB 586 
(http://www.scandb.org/newinterface/about.html), the Broad Institute  GTEx73 Portal, and the Pritchard 587 
Lab (eqtl.uchicago.edu). Cerebellum, parietal lobe and liver eQTL data were downloaded from ScanDB. 588 

Cis-eQTLs were limited to those with P<1.0E-6 and trans-eQTLs with P<5.0E-8. Results for  GTEx73 589 
Analysis V4 for 13 tissues were downloaded from the  GTEx73 Portal and then additionally filtered as 590 
described below [www. GTExportal.org: thyroid, leg skin (sun exposed), tibial nerve, aortic artery, tibial 591 

artery, skeletal muscle, esophagus mucosa, esophagus muscularis, lung, heart (left ventricle), stomach, 592 
whole blood, and subcutaneous adipose tissue 73]. Splicing QTL (sQTL) results generated with 593 

sQTLseeker with false discovery rate P≤0.05 were retained. For all gene-level eQTLs, if at least 1 SNP 594 
passed the tissue-specific empirical threshold in  GTEx73, the best SNP for that eQTL was always retained. 595 
All gene-level eQTL SNPs with P<1.67E-11 were also retained, reflecting a global threshold correction of 596 

P=0.05/(30,000 genes X 1,000,000 tests). 597 
 598 
Second, since public databases with eQTL data do not have information available on current smoking 599 

status, we also conducted an eQTL association analysis using expression results derived from fasting 600 
peripheral whole blood collected. Total RNA was isolated from frozen PAXgene blood tubes 601 

(PreAnalytiX, Hombrechtikon, Switzerland) and amplified using the WT-Ovation Pico RNA Amplification 602 
System (NuGEN, San Carlos, CA) according to the manufacturers’ standard operating procedures. The 603 
obtained cDNA was hybridized to the Human Exon 1.0 ST Array (Affymetrix, Inc., Santa Clara, CA). The 604 

raw data were quantile-normalized, log2 transformed, followed by summarization using Robust Multi-605 
array Average 327and further adjusted for technical covariates, including the first principal component of 606 

the expression data, batch effect, and the all-probeset-mean residual. Study specific covariates in the 607 
association model included blood cell counts and cohort membership. 608 
We evaluated all transcripts +/- 1MB around each novel variant in the Framingham Heart Study while 609 

accounting for current smoking status, using the following four approaches similar to those used in our 610 
primary analyses of our traits: 611 
 612 

Model 1 (adjusted main effect of eQTL): Expression ~SNP  + SMK + age + age-squared + sex + study 613 
specific covariates 614 

 615 
Model 2 (main effect of eQTL stratified by smoking status): Expression ~ SNP  + age + age-squared + sex 616 
+ study specific covariates 617 

 618 
Model 3 (Interaction effect of eQTL): Expression ~ SNP + SMK +  SNP*SMK + age + age-squared + sex + 619 
study specific covariates 620 

 621 
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Model 4 (Joint effect of eQTL): Expression ~ SNP + SMK + SNP*SMK  + age + age-squared + sex + study 622 
specific covariates  623 

 624 
Significance level was evaluated by FDR < 5% per eQTL analysis and across all loci identified for that 625 

model in the primary meta-analysis. 626 
 627 
eQTL Results by Trait 628 

 629 
Only significant cis-eQTLS in high LD with our novel lead SNPs (r2>0.9, calculated in the 630 
CEU+YRI+CHB+JPT 1000 Genomes reference panel), or proxy SNPs, were retained for consideration.  631 

 632 
For BMI, three of our seven novel SNPs across six loci that had at least one variant in high LD (r2>0.9) 633 

with the tag SNP that is significantly (Online Methods) associated with expression of a gene transcript in 634 
the cerebellum and prefrontal cortex, or blood cell types, including EPHA3, TTC14, and INADL. Notably, 635 
our lead SNP, rs2481665, is a significant cis-eQTL for INADL, in prefrontal cortex tissue, and for INADL  636 

and LITD1 in whole blood after adjusting for SMK (false discovery rate, FDR<5%). For the joint main + 637 
interaction effect eQTL analysis, we identified one significant eQTL for a BMI associated variant 638 
(rs12902602) for three gene transcripts (PSMA4, CHRNA5, and CTSH).  639 

 640 
For WCadjBMI, five of our 12 novel SNPs were in high LD with a cis-eQTL for gene transcripts in the 641 

cerebellum, temporal cortex, prefrontal cortex, lymphoblastoid cells, liver, lung, lymph, omental 642 
adipose, subcutaneous adipose, Primary PHA-stimulated T cells, skin, and blood cell tissues in publicly 643 
available databases. In our cis-eQTL analyses adjusting for SMK, four of our nine novel lead SNPs were 644 

significant cis-eQTLs for 14 gene transcripts in 12 genes. Additionally, for the joint main + interaction 645 
effect eQTL analysis, we identified that two variants that were associated with the expression of SEPT2, 646 
FARP2, PASK, and HDLBP (rs6743226) and KIF1B (rs17396340).  647 

 648 
For WHRadjBMI, three of out six novel SNPs were in high LD with a nearby cis-eQTL for gene transcripts 649 

in subcutaneous adipose tissue and blood cell types. We identified five novel WHRadjBMI variants near 650 
significant cis-eQTLs for 49 gene transcripts after adjusting for SMK, the most significant of which was 651 
between our tag SNP rs1049281 and MSH5. Additionally, for the joint main and interaction effect eQTL 652 

analysis, we identified two novel WHRadjBMI variants (rs1049281, rs1856293) were associated with 19 653 
gene transcripts. 654 

 655 
Across all of our three obesity-related traits, the majority of significant cis-eQTLs from public databases 656 
are found in blood cell lines (63% of unique SNP-transcript associations) (Supplementary Table 16).  657 

However, as in previous eQTL analyses of obesity-associated variants, we identify cis-eQTLs in brain and 658 
adipose tissue. Further analyses are needed to determine if these tissue-specific eQTLs remain 659 
significant after accounting for SMK, but our de-novo analysis in whole blood samples from the 660 

Framingham Heart Study using models to account for SMK indicate that gene expression may underlie 661 
our association signals in some instances and smoking exposure may play a role in influencing these 662 

associations (Supplementary Tables 16-18). 663 
 664 
 665 
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Supplementary Figure 1. Summary of overall study design and workflow for meta-analyses. All numbers provided 
represent the maximum number specific for that trait (BMI-red, WCadjBMI-blue, and WHRadjBMI-green) and strata 
(EUR-European descent participants, nonEUR-excluding European descent participants). Three studies provided GWAS 
data for EUR and nonEUR participants. 
 

 
  



Supplementary Figure 2. Summary plots of discovery meta-analysis for Approach 1 primary meta-analyses. (A) 
Manhattan plot showing the loci identified in Approach 1 in primary meta-analyses, used to identify significant main 
effects loci (SNPadjSMK), in the primary meta-analyses association –log10P-values for BMI-red, WCadjBMI-blue, and 
WHRadjBMI-green; (B) Manhattan plot showing the loci identified in Approach 1 excluding known regions +/- 500 kb and 
labeled with the nearest gene to the index SNP; (C) QQ-plot showing the Approach 1 P-values as observed against those 
expected under the null for each phenotypes separately (colored); (D) QQ-plot for Approach 1 after excluding known 
association regions. *PSMB10 locus is >500 +/- kb from previously identified index SNPs, but is not independent of 
known GWAS signals. 

 
  



Supplementary Figure 3. Regional association plot for all loci identified in Approach 1 in primary meta-analyses, used to 
identify significant interaction (SNPadjSMK), in the primary meta-analyses for A) BMI, B) WCadjBMI, and C) WHRadjBMI, 
and ordered as they appear in Table 1. LD has been calculated using the combined ancestries from the 1000 Genomes 
Phase 1 reference panel. For comparison, each plot highlights the p-value for the tag SNP in Approach 1 (PadjSMK), 
Approach 2 (Pjoint), Approach 3 (Pint), current smokers (PSMK), and in nonsmokers (PnonSMK). EUR-European-only meta-
analysis. 
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Supplementary Figure 4. Summary plots of discovery meta-analysis for Approach 2 primary meta-analyses. (A) 
Manhattan plot showing the loci identified in Approach 2 in primary meta-analyses, used to identify significant joint 
main+interaction effects loci (SNPjoint), in the primary meta-analyses association –log10P-values for BMI-red, 
WCadjBMI-blue, and WHRadjBMI-green; (B) Manhattan plot showing the loci identified in Approach 2 excluding known 
regions +/- 500 kb and labeled with the nearest gene to the index SNP; (C) QQ-plot showing the Approach 2 P-values as 
observed against those expected under the null for each phenotypes separately (colored); (D) QQ-plot for Approach 2 
after excluding known association regions. 
 

 



Supplementary Figure 5. Regional association plot for all loci identified in Approach 2 in primary meta-analyses, used to 
identify significant interaction (SNPint), in the primary meta-analyses for A) BMI and B) WCadjBMI, and ordered as they 
appear in Table 1. LD has been calculated using the combined ancestries from the 1000 Genomes Phase 1 reference 
panel. For comparison, each plot highlights the p-value for the tag SNP in Approach 1 (PadjSMK), Approach 2 (Pjoint), 
Approach 3 (Pint), current smokers (PSMK), and in nonsmokers (PnonSMK). EUR-European-only meta-analysis. 
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Supplementary Figure 6. Regional association plot for all loci identified in Secondary meta-analyses, and ordered as they 
appear in Tables 2. LD has been calculated using the combined ancestries from the 1000 Genomes Phase 1 reference 
panel. For comparison, each plot highlights the p-value for the tag SNP in Approach 1 (PadjSMK), Approach 2 (Pjoint), 
Approach 3 (Pint), current smokers (PSMK), and in nonsmokers (PnonSMK). P-values are shown from the strata in which the 
signal was identified (e.g. European-only women). 
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Supplementary Figure 7. Simulation-based estimation of type 1 error using QQ plots. Shown are the 

QQ plots of simulation results for Approach 1 (adjusted effect), Approach 2 (joint effect), Approach 3 

and 4 (interaction effects). The simulation was based on MAF=0.05, 50,000 smokers and 180,000 

nonsmokers.  

 

 



Supplementary Fig. 8. Heatmap of –log10P-values for SNPadjSMK, SNPjoint, and SNPint models. We have included each variant identified in the 

all ancestries analysis which was significant for Approaches 1-3. Strength of color represents the –log10 P-value from the all ancestries, 

combined sexes meta-analysis. 

 



Supplementary Figure ф. Summary plots of discovery meta-analysis for Approach 3 primary meta-analyses. (A) 
Manhattan plot showing the loci identified in Approach 2 in primary meta-analyses, used to identify significant 
interaction effects loci (SNPint), in the primary meta-analyses association –log10P-values for BMI-red, WCadjBMI-blue, 
and WHRadjBMI-green; (B) Manhattan plot showing the loci identified in Approach 2 excluding known regions +/- 500 kb 
and labeled with the nearest gene to the index SNP; (C) QQ-plot showing the Approach 2 P-values as observed against 
those expected under the null for each phenotypes separately (colored); (D) QQ-plot for Approach 2 after excluding 
known association regions. 

 



Supplementary Figure мл. Regional association plot for all loci identified in Approach 3 in primary meta-analyses, used to 
identify significant interaction (SNPint), in the primary meta-analyses for A) BMI and B) WCadjBMI, and ordered as they 
appear in Table 3. LD has been calculated using the combined ancestries from the 1000 Genomes Phase 1 reference 
panel. For comparison, each plot highlights the p-value for the tag SNP in Approach 1 (PadjSMK), Approach 2 (Pjoint), 
Approach 3 (Pint), current smokers (PSMK), and in nonsmokers (PnonSMK). EUR-European-only meta-analysis. 
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Supplementary Figure мм. Estimated effects (β ± 95% CI) per risk allele for A) BMI, B) WCadjBMI, and C) WHRadjBMI for the most significant variant for 
each locus identified in the primary meta-analyses (combined ancestries and combined sexes) for Approaches 1 (SNPadjSMK), 2 (SNPjoint) and 3 (SNPint). Loci 
are ordered by greater magnitude of effect in smokers compared to nonsmokers and labeled with the nearest gene. 

  



Supplementary Figure 1н. Estimated effect estimates (β ± 95% CI) per risk allele for A) BMI, B) WCadjBMI, and C) WHRadjBMI for the most significant variant for 
each locus identified in the secondary meta-analyses (sex-stratified and European-only analyses) for Approaches 1 (SNPadjSMK), 2 (SNPjoint) and 3 (SNPint). Loci 
are ordered by greater magnitude of effect in smokers compared to nonsmokers and labeled with the nearest gene. 

  



Supplementary Figure 13. Comparison of estimated effect estimates (SE) per risk allele in GIANT only 
and UKBiobank validation analysis for A) BMI stratified by smoking status, B) BMI adjusted for smoking 
status, C) WCadjBMI stratified by smoking status, D) WCadjBMI adjusted for smoking status, E) 
WHRadjBMI stratified by smoking status, and F) WHRadjBMI adjusted for smoking status for each novel 
and GxSMK SNP in Tables 1-4.  
 

 




