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Abstract

Background: Previous studies have suggested that modern obesogenic environments

accentuate the genetic risk of obesity. However, these studies have proven controversial

as to which, if any, measures of the environment accentuate genetic susceptibility to

high body mass index (BMI).

Methods: We used up to 120 000 adults from the UK Biobank study to test the hypothesis

that high-risk obesogenic environments and behaviours accentuate genetic susceptibility

to obesity. We used BMI as the outcome and a 69-variant genetic risk score (GRS) for

obesity and 12 measures of the obesogenic environment as exposures. These measures

included Townsend deprivation index (TDI) as a measure of socio-economic position, TV

watching, a ‘Westernized’ diet and physical activity. We performed several negative

VC The Author 2017. Published by Oxford University Press on behalf of the International Epidemiological Association 1

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

International Journal of Epidemiology, 2017, 1–17

doi: 10.1093/ije/dyw337

Original Article

http://www.oxfordjournals.org/


control tests, including randomly selecting groups of different average BMIs, using a

simulated environment and including sun-protection use as an environment.

Results: We found gene–environment interactions with TDI (Pinteraction¼3�10–10), self-

reported TV watching (Pinteraction¼ 7�10–5) and self-reported physical activity

(Pinteraction¼5�10–6). Within the group of 50% living in the most relatively deprived situ-

ations, carrying 10 additional BMI-raising alleles was associated with approximately 3.8 kg

extra weight in someone 1.73 m tall. In contrast, within the group of 50% living in the least

deprivation, carrying 10 additional BMI-raising alleles was associated with approximately

2.9 kg extra weight. The interactions were weaker, but present, with the negative controls,

including sun-protection use, indicating that residual confounding is likely.

Conclusions: Our findings suggest that the obesogenic environment accentuates the risk

of obesity in genetically susceptible adults. Of the factors we tested, relative social de-

privation best captures the aspects of the obesogenic environment responsible.
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Introduction

The prevalence of obesity is set to dramatically exceed tar-

gets set by the World Health Organization and place an in-

creasingly large burden on health services throughout the

world.1 Whilst environmental influences, including diet and

lifestyle, have caused the obesity epidemic,2 twin and family

studies show that genetic factors influence susceptibility to

obesity in today’s environment.3,4 Recent genetic studies

have identified many common genetic variants associated

with body mass index (BMI)5 but the role of genetic suscep-

tibility in different modern-day environments has proven

controversial. Different studies have concluded that phys-

ical inactivity6,7 and consuming more fried food,8 more

fizzy drinks9 or more protein10 accentuates the risk of obes-

ity in those genetically predisposed. These studies have

often concluded that their results highlight the need for

public health interventions targeted at the specific environ-

mental factors, e.g. ‘highlighting the particular importance

of reducing fried food consumption in individuals genetic-

ally predisposed to obesity’.8 Other studies have not identi-

fied interactions, most recently between the FTO variant

and weight loss.11 Previous studies have often had to rely

on meta-analysis of data from many heterogeneous

studies.6,7,12–14 Most importantly, unlike main effect

Mendelian randomization studies, gene x environment

interaction studies are susceptible to confounding.15,16 A re-

cent study, testing only the variant in the FTO locus, over-

came many of these issues by using a single large, relatively

homogeneous study—the UK Biobank—and testing many

measures of the environment in the same statistical

model.17

One objective but broad measure of the obesogenic envir-

onment is relative social deprivation. Social deprivation is

correlated with obesity in children18 and adults,19 and studies

show that people from more deprived backgrounds make

poorer food choices20 and tend to be less active.21 Whilst

people from more socially deprived backgrounds are more

overweight on average, few studies have tested the hypothesis

that deprivation accentuates genetic susceptibility to obesity.

An exception is the recent study using the UK Biobank that

nominally suggested that deprivation accentuates the BMI ef-

fect of the variant at the FTO locus (P¼0.035).17

The UK Biobank study was designed to improve our

understanding of the interaction between genes and the en-

vironment in health and disease. It provides a unique op-

portunity to investigate a range of obesogenic

Key Messages

• This study suggests that something about the obesogenic environment accentuates the genetic risk of obesity.

• Caution needs to be taken when interpreting gene–environment interactions, as they are not immune from confound-

ing. We have illustrated this point by using a negative control ‘environment’ that is implausibly causal to obesity.

• In contrast to the conclusions from previous studies, this study demonstrates that there is unlikely to be any one par-

ticular aspect of the environment or behaviour that, if altered, would have a preferential benefit over others.

• It is premature to use genetic interaction studies to suggest that public health measures should be targeted specific-

ally at fried-food reduction, fizzy-drink consumption and diet in those genetically predisposed to obesity.
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environments and behaviours in a single large, relatively

homogeneous study. Here, we hypothesized that genetic

susceptibility to high BMI interacts with aspects of the obe-

sogenic environment and obesogenic behaviours to accen-

tuate the risk of obesity.

Materials and methods

UK Biobank participants

The UK Biobank recruited over 500 000 adults aged 37–73

years in 2006–10 from across the UK. Participants pro-

vided samples and a range of information via question-

naires, interviews and measurements.22 We used up to

119 733 adults of White British descent with genetic data,

BMI and at least one obesogenic variable available. We did

not include other ethnic groups, because individually they

were underpowered to detect previously reported effects.

British descent was defined as individuals who both self-

identified as White British and were confirmed as ances-

trally Caucasian using principal components analyses

(PCA) of genome-wide genetic information. This dataset

underwent extensive central quality control (http://bio

bank.ctsu.ox.ac.uk) including the exclusion of the majority

of third-degree or closer relatives from a genetic kinship

analysis of 96% of individuals. We performed an add-

itional round of PCA on these 120 286 UK Biobank partici-

pants. We selected 95 535 independent single-nucleotide

polymorphisms (SNPs) (pairwise r2< 0.1) directly geno-

typed with a minor allele frequency (MAF)� 2.5% and

missingness< 1.5% across all UK Biobank participants

with genetic data available at the time of this study

(n¼ 152 732), and with HWE P>1�10–6 within the

White British participants. Principal components were sub-

sequently generated using FlashPCA13 and the first five ad-

justed for in all analyses.

Patient involvement

Details of patient and public involvement in the UK

Biobank are available online (http://www.ukbiobank.ac.

uk/about-biobank-uk/ and https://www.ukbiobank.ac.uk/

wp-content/uploads/2011/07/Summary-EGF-consultation.

pdf?phpMyAdmin¼trmKQlYdjjnQIgJ%2CfAzikMhE

nx6).

Phenotypes

BMI

The UK Biobank measured weight and height in all partici-

pants and calculated BMI. BMI was available for 119 883

individuals of White descent with genetic data available.

We performed analyses of BMI on both its natural (kg/m2)

and an inverse normalized scale to account for differences

in variances.

BMI, genetic data and at least one obesogenic meas-

ure was available for up to 119 733 individuals

(Supplementary Table 1, available as Supplementary data

at IJE online).

Obesogenic environment and behaviour variables

The obesogenic environment refers to an environment that

promotes gaining weight and that is not conducive to

weight loss.23 Here we use the term ‘environment’ to refer

to any variable that describes a component to obesity that

is not genetic variation. Many of these measures are likely

to be a complex mixture of environment and behaviour.

For example, the number of fizzy drinks a person con-

sumes could be a mix of availability in the environment

and satiety.

We selected 12 measures of the obesogenic environment

including Townsend deprivation index (TDI) as a measure

of socio-economic position, sedentary time, TV watching,

physical activity (three measures), Western diet, percentage

protein and fat intake, fried-food consumption, fizzy-drink

consumption and a composite score of TV watching, sed-

entary time, physical activity and Westernized diet. As a

negative control, we chose a variable with an implausible

causal link to BMI: sun-protection use in the summer.

These measures were all self-reported at the same time as

BMI was measured with the exception of TDI and the ac-

celerometer data used to measure activity in a subset of in-

dividuals (n¼ 19 229). Several measures were correlated

with each other, with a maximum correlation of R¼0.64

between TV watching and sedentary time (Supplementary

Table 2, available as Supplementary data at IJE online).

For presentation purposes, each obesogenic variable was

dichotomized to represent high and low exposure either at

the median or a specific cut-off as close to the median as

possible. For testing of interactions, we used continuous

measures of the environment because using thresholds to

select groups of individuals can inflate gene-BMI effect es-

timates if the variance of the environmental measure is

lower in the selected group than the comparison group.

The 12 measures of the obesogenic environment are

described below. All self-report measures were associated

with factors such as sex, measures of socio-economic pos-

ition (TDI) and type 2 diabetes in the expected directions,

(Supplementary Table 3, available as Supplementary data

at IJE online).

TDI

The TDI is a composite measure of deprivation based on

unemployment, non-car ownership, non-home ownership
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and household overcrowding; a negative value represents

high socio-economic position.24 TDI was calculated prior

to joining the UK Biobank and was based on the preceding

national census data, with each participant assigned a

score corresponding to the postcode of their home

dwelling.

The TDI variable was skewed (Supplementary Figure 1,

available as Supplementary data at IJE online) and there-

fore we single inverse normalized this variable for use in

sensitivity analyses.

Job class

On finding an interaction with TDI, we tested more spe-

cific variables related to TDI including job class and num-

ber of years in education. The UK Biobank asked people to

select their current or most recent job. This was classified

into one of the following strata: elementary occupations,

process plant and machine operatives, sales and customer

service occupations, leisure and other personal service oc-

cupations, personal service occupations, skilled trades,

admin and secretarial roles, business and public sector as-

sociate professionals, associate professionals, professional

occupations, and managers and senior officials. Data were

available for 76 374 individuals.

Years in education

A variable based on the standardized 1997 International

Standard Classification of Education (ISCED) of the

United Nations Educational, Scientific and Cultural

Organisation was created in the UK Biobank, using previ-

ously published guidelines.25 Data were available for

118 775 individuals.

Replication with TDI: CoLaus Study

The CoLaus Study26 is a population-based study including

over 6500 participants from Lausanne (Switzerland). This

study included inhabitants aged 35–75 years at baseline

(2003–06) and they were followed up between 2009 and

2012 (mean follow-up 5.5 years). Within this cohort, TDI

was available for 5237 individuals with BMI and BMI gen-

etic variants available. The use of TDI in Lausanne may

capture socio-economic position in a different way to the

UK Biobank, because e.g. not owning a car is not necessar-

ily correlated with precarity. The CoLaus Study complied

with Declaration of Helsinki and was approved by the

local Institutional Ethics Committee.

Replication with job class: 1958 Birth Cohort

The 1958 Birth Cohort27 has followed persons born in

England, Scotland and Wales during one week in 1958

from birth into middle age. Within this cohort, 6171 indi-

viduals had information on social class based on their own

current or most recent occupation (at age 42), BMI (meas-

ured at age 44–45) and genetic data.

Dietary information

All participants completed a generic diet questionnaire

during recruitment and a subset of 46 526 individuals com-

pleted up to five 24-h food frequency questionnaires

(FFQ). The FFQ focused on the consumption of approxi-

mately 200 commonly consumed food and drinks (http://

biobank.ctsu.ox.ac.uk/crystal/refer.cgi?i¼118240). For

each participant completing the food frequency question-

naire, nutrient intakes were estimated by multiplying the

quantity consumed by the nutrient composition of the food

or beverage, as taken from the UK food composition data-

base.28 The 46 526 participants with genetic data complet-

ing at least one standard (i.e. normal diet) FFQ were

included in this study. Where participants had completed

more than one FFQ for a standard day’s diet, an average

was calculated for the food group of interest.

Fizzy-drink consumption

Fizzy-drink consumption was determined from the FFQ

and represented number of glasses of fizzy drink consumed

on an average day. This was dichotomized at the median,

resulting in two groups: low risk (no fizzy drinks daily,

n¼ 40 107) and high risk (at least one fizzy drink a day,

n¼ 6419). No data on type of fizzy drink were available.

Fried-food intake

Fried-food intake was determined from the FFQ and com-

bined the reported intake of fried chicken and fried potato.

Percentage fat

Fat (in grams) consumed was taken from the UK Biobank-

derived nutrients information in the FFQ. The variable was

then divided by total energy intake (in kJ).

Percentage protein

Protein (in grams) consumed was taken from the UK

Biobank-derived nutrients information in the FFQ. The

variable was then divided by total energy intake (in kJ).

Calorie-dense ‘Western’ diet

The generic diet questionnaire was used to calculate the

average consumption of fruit, vegetables, fish (oily and

non-oily), meat (processed, poultry, beef, lamb and pork),

cheese, milk, bread, cereal, tea, coffee and water. To con-

dense this information, we performed a principal compo-

nent factor analysis. Seven eigenvalues were greater than 1,

factor 1 was considered to represent a calorie-dense

‘Western’ diet (high intake of prepared meals, processed

meats, crisps, etc.) and factor 2 represented a prudent diet
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(high intake of vegetables, fruit and fish). This information

was available for 94 040 individuals of White origin with

genetic data available.

Physical activity

International Physical Activity Questionnaire

The UK Biobank asked a range of questions about physical

activity questions to all participants. We derived the total

metabolic equivalent of task (MET) minutes of exercise

per week [based on the International Physical Activity

Questionnaire (IPAQ)]. This is calculated using the num-

ber of days and minutes per day spent walking, performing

moderate or vigorous activity and the speed of walking

variable. Individuals reporting more than 16 h of walking

and/or moderate and/or vigorous activity a day were

excluded (n¼ 1589) on the grounds that these values were

likely to be an error or misreporting. All individuals report-

ing more than 3 h per day of walking, moderate or vigor-

ous activity were re-coded to 3 h as per IPAQ guidelines.29

The MET is a physiological measure expressing the en-

ergy cost (or calories) of physical activities. The numbers

of minutes per week for each level of exercise intensity

(walking, moderate and vigorous) are multiplied by spe-

cific MET values.30 MET values used for the short IPAQ

are 2.5 for slow walking, 3.3 for moderate walking and 5

for fast walking, 4 for moderate exercise and 8 for vigor-

ous exercise. Total MET minutes are calculated by sum-

ming MET minutes per week for walking, moderate and

vigorous exercise. The short form of IPAQ is validated30,31

and utilized in many studies into physical activity.32

Sedentary behaviour

The UK Biobank asked all participants about the hours per

day they spent (i) driving, (ii) using a computer and (iii) watch-

ing television. These three variables were summed to provide

the hours per day that participants spent sat down. Values

greater than 24h per day were excluded. Those reporting over

16 h were re-coded to 16 h. Sedentary time was available for

119 688 individuals with genetic data available. We dichotom-

ized individuals into those who spent less than 5 h a day seden-

tary (n¼ 63 631) and those who spent 5 or more hours a day

sedentary (n¼ 56 655).

TV watching

Participants in the UK Biobank were asked to report how

many hours they spent watching TV in a typical day. We

dichotomized individuals into those watching 4 or more

hours of TV per day (n¼37 029) and those watching 3 h

or less (n¼82 392). This was based on the median value

(3 h) but, due to lots of tied values, this resulted in imbal-

anced groups.

Vigorous activity

The minutes of vigorous activity per week were calculated

and, for display purposes, a dichotomous variable was also

derived denoting participants who performed more than

1 h of vigorous activity per week or not. Of the available

individuals, 35 242 reported more than 1 h of vigorous ac-

tivity per week, whilst 74 128 did not. This was the most

balanced way of dichotomizing this variable because only

21 676 individuals reported more than 2 h.

Measured physical activity with accelerometer data

Daily accelerometer data were available for 19 229 individ-

uals of White British origin with genetic data available for

a period of 6 d. A variable was derived from these data rep-

resenting the mean levels of moderate physical activity per

day for each individual.

Composite score of the obesogenic environment and

behaviour

Physical activity (as measured by IPAQ), sedentary time,

TV watching and Westernized diet were available in

86 549 individuals with BMI genetic variants available. We

did not use other variables, as they were only available in

smaller numbers. The obesogenic variables were combined

using a principle components factor analysis in STATA.

Only one factor had an eigenvalue of greater than 1 and

this was used as a composite score of the obesogenic

environment.

Negative control ‘environments’

We performed three negative control experiments.

Self-reported sun-protection use

First, we used sun-protection use as a negative control vari-

able to assess residual confounding. UK Biobank partici-

pants were asked ‘Do you wear sun protection (e.g.

sunscreen lotion, hat) when you spend time outdoors in the

summer?’ with the options: Never, Sometimes, Most of the

time, Always, Don’t go out in the sun, Don’t know and

Prefer not to answer. The variable was correlated with TDI

and BMI but is implausible as a mechanism (see the

Discussion section for why vitamin D exposure is unlikely

to be a mechanism in this context) (Supplementary Table

3, available as Supplementary data at IJE online).

International Journal of Epidemiology, 2017, Vol. 0, No. 0 5

http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw337/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw337/-/DC1
http://ije.oxfordjournals.org/lookup/suppl/doi:10.1093/ije/dyw337/-/DC1


Randomly selecting groups of individuals to be of different

average BMI

Second, we used a meta-heuristic sampling approach to

randomly select two groups of individuals with BMI distri-

butions identical to the high and low groups for observed

obesogenic environment measures. For example, this

method was used to select 59 712 individuals with a mean

BMI of 27.86 and a standard deviation of 5.12 represent-

ing the 50% of individuals in the lowest socio-economic

position and a group of 59 754 individuals with a mean

BMI of 27.19 and a standard deviation of 4.47 represent-

ing the 50% of individuals in the highest socio-economic

position. There was no overlap between individuals se-

lected for the two groups. Meta-heuristic sampling was re-

peated 100 times and the interaction P-values were

calculated each time. Here we report the results from the

median analysis based on the interaction P-value. We re-

peated this process 100 times to match average BMIs to

those for five dichotomized measures of the environment:

four that interacted (at P< 0.05): the composite score, self-

report physical activity, socio-economic position (TDI) and

TV watching; and one that did not interact (at P> 0.05)

but where BMI differences were substantial: fizzy-drink

consumption.

BMI GRS interactions with dummy ‘environments’

Third, we created dummy continuous variables as random

‘environments’. The new variables were created in STATA

by regressing the obesogenic variables on BMI, the BMI

GRS and a range of covariates (age, age2, sex) and taking

the fitted values and the residuals. The fitted value from

the regression was then added to random permutations of

the residuals (n¼ 10 000) to produce 10 000 simulated

variables that associate with BMI in a similar way to the

real obesogenic variable, but are only minimally associated

with the real variable itself. This ensures that the simulated

variable has the same conditional expectations and same

residual distributions as the five real variables (physical ac-

tivity, TDI, TV watching, the composite score and fizzy-

drink consumption). Further information on this method is

provided in the Supplementary data (available as

Supplementary data at IJE online). The interaction model

was run for all 10 000 simulations. Here we report the re-

sults from the median simulation (based on the interaction

P-values).

Selection of genetic variants associated with BMI

and GRS

We selected 69 of 76 common genetic variants that were

associated with BMI at genome-wide significance in the

GIANT consortium in studies of up to 339 224 individuals

(Supplementary Table 4, available as Supplementary data

at IJE online).5 We used these variants to create a GRS to

represent genetic susceptibility to high BMI—we were not

testing specific variants for interaction, but instead how

genetic susceptibility overall may be influenced by environ-

mental and behavioural exposures. We used genotypes

imputed by UK Biobank. We limited the BMI SNPs to

those that were associated with BMI in the analysis of all

European ancestry individuals. Variants were excluded if

known to be classified as a secondary signal within a locus.

Three variants were excluded from the score due to poten-

tial pleiotropy [rs11030104 (BDNF reward phenotypes),

rs13107325 (SLC39A8 lipids, blood pressure), rs3888190

(SH2B1 multiple traits)], three SNPs not in Hardy

Weinberg Equilibrium (P<1�10–6; rs17001654,

rs2075650, rs9925964) or the SNP was unavailable

(rs2033529).

The imputed dosages for each SNP were re-coded to

represent the number of BMI-increasing alleles for that

particular SNP. A BMI genetic risk score (GRS) was cre-

ated using the SNPs. Each allele associated with high BMI

was weighted by its relative effect size (b-coefficient) ob-

tained from the previously reported BMI meta-analysis

data.5 A weighted score was created [Equation (1)] in

which b is the b-coefficient representing the association be-

tween each SNP and BMI:

Weighted score ¼ b1 � SNP1 þ b2 � SNP2 þ . . . bn

� SNPn: (1)

The weighted score was rescaled to reflect the number

of BMI-increasing alleles [Equation (2)]:

Weighted GRS ¼ weighted score x number of available SNPs

sum of the b coefficients of available SNPs
:

(2)

Statistical analysis

The mean and standard deviation of BMI were calculated

in each of the pairs of obesogenic exposures.

For each of the measures of the obesogenic environ-

ment, we calculated the association between the 69 SNP

BMI GRS and BMI in the high-risk and low-risk environ-

ments using linear regression models. BMI was adjusted

for age, sex, five ancestry principal components and assess-

ment centre location. We additionally adjusted the full

model for genotyping platform (two were used).

Interactions between the genetic variables and the obe-

sogenic environment variables on BMI were tested by

including the respective interaction terms in the models
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[e.g. interaction term¼GRS� physical activity (continu-

ous)]. Continuous measures were used to limit spurious re-

sults from the gene x environment interactions

(Supplementary Methods, available as Supplementary data

at IJE online).

We performed the analyses in two ways. First, we ana-

lysed the data with BMI on its natural scale (kg/m2) (resi-

dualized for age, sex, centre location and five ancestry

principal components). Second, we inverse normalized the

data so that BMI, in all 20 strata, had a mean BMI of 0

and a SD of 1. This analysis allowed us to account for the

differences in BMI variation observed in high- and low-risk

strata. We present primary results from the inverse normal-

ized data. To further assess the extent to which differences

in BMI variation could influence our results, we tested for

heteroscedasticity using the Breusch-Pagan test as imple-

mented with the estat hettest in STATA.33 Standard regres-

sion analysis can produce biased standard errors if

heteroscedasticity is present.34 If heteroscedasticity was

present, we used robust standard errors, using the vce(ro-

bust) option in STATA, which relaxes the assumption that

errors are both independent and identically distributed and

are therefore more robust.

For the TDI analyses, we also repeated the analysis ad-

justing for other measures of the environment previously

associated with interactions, including self-reported phys-

ical activity, TV watching and diet7,9,10,35 and corrected

for interaction terms with other environmental measures.

Finally, we investigated each of the 69 SNPs individu-

ally. Interactions between each SNP and the TDI on

BMI were tested by including the respective interaction

terms in the models [e.g. interaction term¼ SNP�TDI

(continuous)].

Identical analyses were performed in the CoLaus Study

and the 1958 Birth Cohort.

Testing for potential reverse causality

Genetic variants could influence BMI through primary ef-

fects on physical activity or diet-related variables, espe-

cially when BMI is measured at the same time as the

exposure. For example, alleles that reduce activity could

increase BMI and result in estimates of self-reported activ-

ity biased towards higher activity. This direction of causal-

ity could result in alleles associated with higher BMI being

associated with stronger effects on BMI in people reporting

more activity. To attempt to test for this possibility, we

looked for evidence that BMI-associated variants had pri-

mary effects on levels of activity and measures of diet.

None of the BMI-associated variants had effects on activity

that were disproportionately larger than their BMI effects

(Supplementary Methods and Supplementary Figure 2,

available as Supplementary data at IJE online). The BMI

GRS was associated with some of the obesogenic measures

of the environment (3 of 12 below the threshold of 0.004;

Supplementary Table 5, available as Supplementary data

at IJE online).

Results

Measures of the obesogenic environment and

behaviour are associated with BMI and variance

in BMI in the UK Biobank study

We used 12 measures of the obesogenic environment and

behaviour that were associated with BMI in the UK

Biobank in the expected directions (Table 1). All self-

reported measures were associated with sex, measures of

socio-economic status and type 2 diabetes in the expected

directions, suggesting that over-reporting of healthy and

underreporting of unhealthy behaviour had not completely

biased the associations with self-reported measures

(Supplementary Table 3, available as Supplementary data

at IJE online). In each case, the group of people in the

higher-risk environment had a larger mean BMI but also a

larger variation in BMI, as measured by the standard devi-

ation, compared with people in the lower risk environment

(Table 1 and Supplementary Figure 3, available as

Supplementary data at IJE online). For example, the 50%

least (self-reporting) physically active people (n¼ 54 569)

had an average BMI of 27.9 kg/m2, and 95% had a BMI

between 21.3 and 37.3 kg/m2 (a range of 16) whereas the

50% most physically active people (n¼ 54 573) had an

average BMI of 26.9 kg/m2, and 95% had a BMI between

21.9 and 34.7 kg/m2 (a range of 12.8).

Genetic variants are associated with BMI in the

UK Biobank study

The BMI GRS, consisting of 69 known BMI-associated

variants, was associated with higher BMI and explained

1.5% of the variation in BMI—a figure consistent with

previous studies.5

Measures of high-risk obesogenic environments

and behaviours are associated with an

accentuated risk of high BMI in genetically

susceptible individuals

We observed interactions between measures of the obeso-

genic environment and genetic susceptibility to high BMI

in the following scenarios (Table 2, Figures 1 and 2, and

Supplementary Figure 4, available as Supplementary data

at IJE online).
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TDI

A higher level of deprivation was associated with an accentu-

ated genetic susceptibility to higher BMI. The effect of the

BMI GRS on BMI was larger in the group of 50% living in

the most relatively deprived situations {0.025 standard devi-

ations per allele [95% confidence interval (CI): 0.023–0.027]}

compared with the group of 50% living in the least deprived

situations [0.022 SDs per allele (95% CI: 0.020–0.024)]

(Table 2 and Figure 2a). When performing the analysis with

TDI on a continuous scale (a more robust analysis than using

dichotomized measures), the interaction was strong:

Pinteraction 2� 10–10. This apparent gene x deprivation inter-

action meant that, compared with below-average deprivation

(in the UK Biobank), above-average deprivation was associ-

ated with a 0.92kg/m2 higher BMI in people with the highest

genetic risk (top decile) but a 0.35 kg/m2 higher BMI in

people at least genetic risk (bottom decile) (Table 2 and

Figure 2a). Another way of expressing the interaction is that,

within the 50% group living in the most deprived situations,

carrying 10 additional BMI-raising alleles (weighted by effect

size) was associated with 3.8 kg extra weight in someone

1.73 m tall. In contrast, within the 50% group living in the

least deprived situations, carrying 10 additional BMI-raising

alleles was associated with 2.9 kg extra weight in someone

1.73 m tall. These differences were even stronger when using

a cut-off that reflected the UK population average TDI36

(Supplementary Table 6, available as Supplementary data at

IJE online) and were consistent across different age groups

(Supplementary Table 7, available as Supplementary data at

IJE online). We also noted that the interaction effect was not

driven by specific BMI-associated variants, but was a feature

of general genetic susceptibility to higher BMI, as measured

by the 69 SNP BMI risk score (Supplementary Table 8 and

Supplementary Figure 5, available as Supplementary data at

Table 1. Comparison of the high- and low-risk categories for the 10 obesogenic environmental/behavioural measures, the com-

posite score and the negative control (sun protection)

Environmental

factor

Obesogenic

category

N Male, N (%) Mean

BMI

SD

BMI

Effect size (95% CI)

representing change in

BMI (kg/m2) for people in the

high-risk group compared with

the low-risk groupa

P

Fizzy drink None daily 39 975 18 327 (45.9) 26.93 4.62 Reference

�1 glass daily 6393 3537 (55.3) 27.69 4.91 0.71 (0.58, 0.83) <1E-15

Fried-food intake None daily 31 821 14 485 (45.5) 26.96 4.66 Reference

�1 meal daily 14 547 7379 (50.7) 27.20 4.68 0.20 (0.10, 0.29) 0.00002

Percentage fatb Low risk 23 194 11 080 (47.8) 26.91 4.46 Reference

High risk 23 174 10 784 (46.5) 27.16 4.86 0.28 (0.19, 0.36) 1E-10

Percentage proteinb Low risk 23 188 12 137 (52.3) 26.70 4.54 Reference

High risk 23 180 9727 (42.0) 27.37 4.77 0.77 (0.68, 0.85) <1E-15

Western dietb Low risk 47 027 19 783 (42.1) 27.06 4.71 Reference

High risk 47 013 24 853 (52.9) 28.00 4.79 0.86 (0.80, 0.92) <1E-15

IPAQ >1845 MET min/week 54 573 27 217 (49.9) 26.86 4.31 Reference

�1845 MET min/week 54 569 25 111 (46.0) 27.93 4.99 1.11 (1.06, 1.17) <1E-15

Sedentary time <5 h daily 63 343 25 281 (39.9) 26.61 4.47 Reference

�5 h daily 56 345 31 387 (55.7) 28.56 4.99 1.84 (1.78, 1.89) <1E-15

TV <4 h daily 82 022 38 866 (47.4) 26.98 4.54 Reference

�4 h daily 36 814 17 496 (47.5) 28.70 5.16 1.69 (1.63, 1.75) <1E-15

Vigorous activity >1 h weekly 35 242 18 672 (53.0) 26.81 4.24 Reference

�1 h weekly 74 128 33 760 (45.5) 27.69 4.88 0.92 (0.86, 0.98) <1E-15

Measured physical

activityb

Low risk 9632 4038 (41.9) 25.79 3.92 Reference

High risk 9636 4777 (49.6) 27.79 4.92 1.97 (1.84, 2.09) <1E-15

TDI (natural scale) High SEP TDI< –2.294 59 872 28 383 (47.4) 27.20 4.47 Reference

Low SEP TDI> –2.294 59 861 28 306 (47.3) 27.87 5.13 0.69 (0.64, 0.75) <1E-15

Composite scoreb Low risk 43 275 19 768 (45.7) 26.33 4.13 Reference

High risk 43 274 21 933 (50.7) 28.46 4.87 2.08 (2.02, 2.14) <1E-15

Sun-protection use Usually or always use 68 507 25 641 (37.4) 27.32 4.75 Reference

Never or sometimes use 50 561 30 743 (60.8) 27.81 4.89 0.31 (0.25, 0.37) <1E-15

aAdjusted for age, sex and ancestry principal components.
bHigh and low risk taken from median values.
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IJE online). Excluding the FTO variant did not alter the evi-

dence of interaction.

In the CoLaus Study of 5237 individuals from

Switzerland, we did not observe any TDI–BMI GRS

interaction, but the effect estimates overlap those in

the UK Biobank (Supplementary Table 9, available as

Supplementary data at IJE online).

Lower occupational job class and less time spent in

education were not associated with an accentuated

genetic susceptibility to higher BMI

To further explore possible reasons for the TDI inter-

action, we tested job class and time spent in education. In

both the UK Biobank and the 1958 Birth Cohort, people

with lower job classes had a higher mean and standard de-

viation for BMI. However, there, we found no interaction

between job class and GRS in determining BMI in either

study (Supplementary Table 9, available as Supplementary

data at IJE online). Using the UK Biobank data, there was

no interaction between time in education and GRS in

influencing BMI (Supplementary Table 9, available as

Supplementary data at IJE online).

Self-reported physical activity

The effect of the BMI GRS on BMI was larger in the 50%

of people reporting less physical activity [0.025 standard

deviations per allele (0.023–0.027)] compared with the

50% reporting more physical activity [0.022 (0.020–

0.024)] (Pinteraction 5�10–6; IPAQ on a continuous scale)

(Table 2 and Figure 2b).

In a subsample (n¼ 19 229) of people we used an ob-

jective, accelerometer-based measure of physical activity

recorded over 6 d. We noted a similar trend with a larger

effect of the BMI GRS on BMI in less physically active peo-

ple [0.026 standard deviations per allele (0.022–0.029)]

compared with those doing more physical activity [0.023

(0.019–0.027)], although the evidence of interaction was

weak (Pinteraction 0.11; Table 2).

Figure 1. Forest plot demonstrating the change in BMI per-allele increase in BMI genetic risk score (GRS) for the 12 different obesogenic environ-

ments and the negative control on a standardized inverse normalized scale. BMI was corrected for age, sex, ancestry principal components and as-

sessment centre location prior to calculating residuals. The analyses were further adjusted for genotype platform.
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TV watching

The effect of the BMI GRS on BMI was larger in people

watching 4 or more hours of TV per day [0.026 standard

deviations per allele (0.024–0.028)] compared with those

watching 3 h or less [0.022 (0.021–0.024)] (Pinteraction

7� 10–5; using TV watching on a continuous scale)

(Table 2 and Figure 2c).

Other self-reported measures of the obesogenic

environment

We did not find any gene x obesogenic environment inter-

action when considering sedentary time, vigorous activity,

Westernized diet, percentage protein or fat in diet, fried-

food or fizzy-drink consumption at Bonferroni-adjusted

thresholds (P< 0.004; Table 2). In six of these seven

Figure 2. Association between the BMI GRS (by decile) and BMI in (a) the most socially deprived (black circles) and least socially deprived (white cir-

cles); (b) high and low self-reported physical activity, (c) high and low TV watching and (d) high and low composite score, (e) high and low use of sun

protection in the summer, (f) individuals randomly selected to be of high BMI (black circles) and individuals randomly selected to be of low BMI (white

circles) and (g) individuals in the high obesogenic simulated environment (black circles) and individuals in the low obesogenic simulated environ-

ment (white circles). Note that, for the simulated environment, we used the median BMI GRS BMI association after 1000 simulations. For (f), it was

not possible to use a continuous measure in the calculation of the interaction term. This figure is based on a similar way of showing interaction data

with a BMI GRS from 12. SEP, socioeconomic position.
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measures (exception percentage fat consumption), the

trend was towards the high-risk obesogenic environments

accentuating the risk of high BMI in genetically susceptible

individuals.

A composite measure of the obesogenic environment

We next tested a composite score consisting of four self-

report variables available in the majority of people: seden-

tary time, TV watching, physical inactivity and

Westernized diet. The 50% of people with a high compos-

ite score were on average 2.2 kg/m2 BMI units heavier than

the 50% with a low composite score. The effect of the BMI

GRS on BMI was larger in people with a high composite

score [0.025 standard deviations per allele (0.023, 0.027)]

compared with those with a low composite score [0.022

(0.021–0.024)] (Pinteraction 2� 10–4; composite score on a

continuous scale) (Table 2 and Figure 2d).

The gene x environment interactions may not be specific to

the environments tested: using negative controls

We next hypothesized that the interactions observed may

not be specific to the obesogenic environment tested, but a

general feature of selecting groups of individuals of higher

BMI and comparing them to groups of individuals of lower

BMI. For example, previous studies have observed stronger

effects of BMI-raising alleles in groups of individuals who

are less active, eating more fried food and consuming more

sugary drinks.6,9,35 However, all these groups were more

overweight on average than those with the healthier life-

styles and environments, and any interaction observed may

have been a feature of higher BMI and the general environ-

ment, not the specific environment tested. We therefore

performed three additional, negative control analyses to

test the specificity of the interactions observed. These tests

represented ‘impossible by the proposed mechanism’ nega-

tive controls.37,38 These analyses also help to test whether

or not statistical artefacts were influencing our results,

such as different variances in BMI.

Sun-protection use as a negative control

First, we tested sun-protection use as a negative control

that has no plausible role in obesity but is associated with

deprivation, the measure with the strongest evidence of

interaction. Using less sun protection in the summer was

associated with higher deprivation and there was an inter-

action with genetic susceptibility to higher BMI, before

(Pinteraction 1� 10–4) and after adjustment for TDI (Table 2

and Figure 2e).

Individuals randomly selected to be of different BMIs

Second, we sampled individuals so that they had identical

BMI distributions (means and standard deviations) to the

high and low TDI groups, but were otherwise randomized

to all other variables. We then tested for evidence of inter-

action using these randomly selected groups. These ana-

lyses were repeated 100 times. The associations between

the BMI GRS and BMI in these randomly selected individ-

uals were similar to those observed when we selected based

on Townsend deprivation index, but none of the 100 iter-

ations showed an interaction P-value lower than the real

TDI interaction (median P¼ 9� 10–4; Table 3, Figure 2f

and Figure 3a). We repeated this analysis by selecting indi-

viduals to have similar BMI distributions to those in the

high- and low-physical-activity, TV-watching, fizzy-drink-

consumption or the high- and low-composite-score groups

but who were otherwise randomized to all other variables.

We saw some interaction with the BMI GRS having larger

effects on BMI in the fatter group compared with thinner

group (median of 100 permutations P¼ 0.003, P¼0.047

and P¼ 0.028 for those selected to have similar BMIs to

the physical activity (IPAQ), TV-watching and composite-

score groups, respectively) (Table 3 and Supplementary

Figure 6, available as Supplementary data at IJE online).

No interaction was found for groups based on the high-

and low-fizzy-drink groups (a real variable with no evi-

dence of interaction) (Table 3 and Supplementary Figure 6,

available as Supplementary data at IJE online). We note

that these analyses are not completely representative of

the real analyses because the interaction term is a binary

variable (presence or absence of the individual in the

randomly selected groups of higher and lower BMI), not

continuous.

A dummy environment

Third, we generated a dummy continuous environment

associated with BMI but not TDI, physical activity or any

of the other measures of the obesogenic environment. We

forced this variable to have a similar correlation to BMI as

the observed real TDI, physical-activity, TV-watching, the

composite-score and the fizzy-drink variables, but that was

only very minimally associated with those real measures of

the environment (see the ‘Methods’ section). We then

tested the hypothesis that the BMI GRS would have stron-

ger effects on BMI in the individuals ‘exposed’ to high lev-

els of this dummy obesogenic environment. We observed

some interaction, with the BMI GRS having stronger ef-

fects on BMI in the fatter groups (P¼ 0.10, P¼ 0.025,

P¼ 0.08 and P¼ 0.003 for the dummy environments cor-

related with BMI to the same extent as TDI, physical activ-

ity, TV watching and the composite score, respectively,

based on the median of 10 000 dummy environments

tested) (Figure 2g, Figure 3b, Table 3 and Supplementary

Figure 7, available as Supplementary data at IJE online).

No interaction was observed for the dummy environment
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correlated with BMI to the same extent as fizzy drinks

(Table 3 and Supplementary Figure 7, available as

Supplementary data at IJE online). However, the evidence

of interaction with these dummy environments tended to

be weaker than that for the real variables. For example,

in the 10 000 permutations of a dummy environment,

we never observed interactions as strong as that

observed with real TDI, providing evidence at P< 0.0001

that the TDI effect was capturing a genuine interaction

(Figure 3b).

Table 3. Associations between BMI GRS and BMI (inverse normalized scale) when randomly selecting groups of different BMIs

or using a simulated environment. The randomly selected groups and simulated environments were based on the observed

BMI distributions in the ‘Trait based on’ column

Simulation Trait

based on

Simulation

category

N BMI (SD) Beta

(per allele)

SE P association P interactiona P interaction

robustb

Randomly selected

individualsc

TDI Low risk 59 753 27.19 0.022 0.001 <1�10–15 8�10–4 9�10–4

(4.47)

High risk 59 711 27.86 0.024 0.001 <1�10–15

(5.12)

Simulated environment TDI Low risk 59 741 27.16 0.022 0.001 <1�10–15 0.09 0.10

(4.61)

High risk 59 740 27.90 0.025 0.001 <1�10–15

(5.01)

Randomly selected

individualsc

IPAQ Low risk 54 573 26.86 0.022 0.001 <1�10–15 0.002 0.003

(4.31)

High risk 54 519 27.93 0.024 0.001 <1�10–15

(4.99)

Simulated environment IPAQ Low risk 59 979 26.97 0.022 0.001 <1�10–15 0.022 0.025

(4.48)

High risk 59 978 28.11 0.025 0.001 <1�10–15

(5.08)

Randomly selected

individualsc

TV watching Low risk 82 022 26.98 0.023 0.001 <1�10–15 0.044 0.047

(4.54)

High risk 36 814 28.70 0.025 0.001 <1�10–15

(5.16)

Simulated environment TV watching Low risk 59 392 26.59 0.023 0.001 <1�10–15 0.07 0.08

(4.34)

High risk 59 391 28.47 0.024 0.001 <1�10–15

(5.06)

Randomly selected

individualsc

Composite

score

Low risk 43 275 26.33 0.021 0.001 <1�10–15 0.027 0.028

(4.13)

High risk 43 274 28.46 0.023 0.001 <1�10–15

(4.87)

Simulated environment Composite

score

Low risk 59 844 27.21 0.023 0.001 <1�10–15 0.002 0.003

(4.64)

High risk 59 844 27.85 0.024 0.001 <1�10–15

(4.97)

Randomly selected

individualsc

Fizzy drink Low risk 39 975 26.93 0.023 0.001 <1�10–15 0.47 0.48

(4.62)

High risk 6393 27.69 0.025 0.002 <1�10–15

(4.91)

Simulated environment Fizzy drink Low risk 37 103 26.66 0.024 0.001 <1�10–15 0.26 0.30

(4.31)

High risk 9275 28.58 0.024 0.001 <1�10–15

(5.64)

BMI adjusted for age, sex, ancestral principal components and assessment centre location. Models additionally adjusted for genotyping platform.
aInteraction P-value.
bInteraction P-value accounting for heteroscedasticity using robust standard errors.
cBy Meta-heuristic sampling.
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Sensitivity analyses

We next performed several sensitivity analyses to further

test the interaction of TDI, TV-hours, physical activity and

a composite measure of the obesogenic environment with

the BMI GRS. We explored a potential source of error—

the correlation between the risk factors and the outcomes.

In this study, risk factors in the interaction model—

measures of the obesogenic environment—were associated

with the outcome—BMI. In theory, this problem could

have created false positive interactions but a number of

sensitivity analyses suggested that this was not the case

(Supplementary information and Supplementary Table 10,

available as Supplementary data at IJE online). We showed

that the interactions for each of the four measures (IPAQ,

TDI, TV watching and the composite score) were similar

when correcting for smoking and the other three measures.

We also showed that the interaction with TDI remained

strong when correcting for the interaction terms of the

other three variables. In contrast, the interaction was atte-

nuated for IPAQ, TV watching and the composite score

when including the TDI interaction term (Supplementary

Table 11, available as Supplementary data at IJE online).

Inflated interactions when analysing BMI on the

kg/m2 scale

When analysed on the natural BMI scale (kg/m2), the evi-

dence of interaction was stronger than when using an in-

verse normalized scale, but likely partly artefactual. The

BMI GRS was associated with even larger effects on BMI

in high-risk obesogenic environments compared with low-

risk environments, and there were apparent interactions

(at P< 0.05) in seven of the 12 tests (Supplementary Table

12 and Supplementary Figure 8, available as

Supplementary data at IJE online). This potential artefact

occurs because the variance in BMI was higher in individ-

uals in the high-risk environment groups and this hetero-

scedasticity inflates effect estimates (Supplementary Figure

9, available as Supplementary data at IJE online).

Discussion

In the UK Biobank, we found that aspects of the obesogenic

environment accentuate genetic susceptibility to higher BMI.

The corollary of this finding, if true, is that exposure to low-

risk obesogenic environments partially attenuates the effects

of genetic susceptibility to obesity. Of the factors we tested,

relatively low socio-economic position, as measured by the

TDI, best captured the relevant environmental factors. Our

results provide some evidence for public health campaigns

aimed at reducing obesity but suggest that measures that tar-

get more deprived individuals may have proportionally higher

impact. We were not testing for specific gene variant–

environment interactions, but instead asking a question of

public health relevance—are people at higher risk of obesity

due to their genetics more susceptible to the obesogenic envir-

onment? We used a BMI GRS as a measure of genetic suscep-

tibility, and the data suggested that no individual variants

contributed disproportionately to the evidence of interaction.

The relevant components of higher levels of deprivation

that accentuate the genetic risk of obesity are uncertain.

When adjusting for measures of self-report physical activ-

ity, a more calorie-dense ‘Westernized’ diet and sedentary

activity, the evidence of interaction remained strong. This

observation, and the interaction with a composite score,

suggests that no one aspect of the obesogenic environment

we tested can explain the interaction effect with TDI, al-

though a caveat to this argument is that these other meas-

ures were self-reported. This conclusion contrasts with

Figure 3. Histograms showing the -log10(P-values) for the interactions from (a) the 100 iterations of the individuals selected to be of different BMIs at

random and (b) the 10 000 iterations of a simulated environment with a similar association to BMI as TDI. The dashed line represents the median

value and the solid line represents the P-value obtained from the real interactions with TDI.
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those from some previous studies that have suggested (in

separate papers) that fried-food and sugary-drink con-

sumption and TV watching specifically interact with BMI

genetics.7–10,35 The evidence of interaction remained

strong when adjusting for urban vs rural dwelling—an ob-

jective measure associated with obesity in the UK Biobank

and previously proposed as a contributory factor to the

obesogenic environment (through reduced exposure to

open spaces, e.g. 39).

Our results are consistent with data from twins, where

the genetic component to obesity is stronger in young UK

children exposed to the modern environment (twins born

in the 1990s and measured at the age of 9), compared with

measures from twin studies in earlier generations3 and that

the genetic and environmental components to common

traits varies by UK region.40

The use of negative controls provided two additional

pieces of evidence about the nature of the gene x obeso-

genic environment interactions. First, when compared with

the real data, the evidence of interaction was weaker when

using a simulated environment or randomly selecting

groups to be of different BMIs. For example, for TDI, we

never observed the actual interaction in 10 000 simulations

of a dummy environment or 100 iterations of selecting

groups of different BMIs. These control experiments mim-

icked almost perfectly the observed differences in BMI, but

still the evidence of interaction was weaker than when

using the real obesogenic environments. These results sug-

gest that something about the real obesogenic environ-

ment, captured by TDI, accentuates genetic risk of obesity.

Second, the use of a control measure implausibly linked

to obesity, sun-protection use, helped us establish the pos-

sibility that residual confounding has affected the results.

The importance of using negative controls in epidemiology

to control for this residual confounding has been dis-

cussed37,38 and is closely related to the use of one of Hill’s

original criteria for causal inference in epidemiology—that

of specificity of the exposure–outcome association.41 The

fact that this negative control showed evidence of inter-

action, even after adjustment for TDI, suggests that either

it is a bad negative control or it is correlated with other

obesogenic factors not captured by TDI—residual con-

founding. We believe that sun-protection use is a good

negative control: low vitamin D levels (which would be

caused by high use of sun protection) are associated with

higher BMI, but there is genetic evidence that this is not a

causal relationship42 and, even if it were, would have re-

sulted in evidence of interaction in the opposite direction

to our observation.

The observation of some evidence of interaction in all

our negative control experiments indicates that genetic

variants altering BMI may have larger effects in any group

of individuals of higher BMI compared with those with

lower BMI. Our results show that the greater the mean and

variance of BMI, the greater the apparent effects of genetic

variants. These effects may be driven by statistical artefacts

that can affect gene x environment interaction studies, and

we note that the evidence is sensitive to the scale on which

the non-genetic factors are analysed. Further work, includ-

ing the use of negative controls that are likely associated

with unmeasured confounders but are implausible, will

help disentangle which aspects of the environment are

causally interacting with BMI genetics to accentuate the

risk of high BMI.

Our analysis had a number of strengths. The major

strength was the availability of a single large study, which

was beneficial for two main reasons. First, it provided us

with relatively homogenous measures of the environment.

Several previous studies were limited to meta-analyses of

summary statistics from many studies with heterogeneous

measures of the environment.6,8–10 An exception is a recent

study that also used the UK Biobank and individual-level

data to jointly model multiple exposures and provide evi-

dence that some measures that we did not test, including

frequency of alcohol consumption and adding salt to food,

remain interacting when adjusting for TDI.17 Second, it

allowed us to test the robustness and specificity of our re-

sults by using a composite measure of the environment,

randomly selecting individuals and testing interactions

using a dummy, simulated environment. A third advantage

is that we used an objective measure of the environment:

TDI, which provides a cleaner interpretation of results

compared with those from previous studies that have had

to rely on subjective measures such as self-reported diet

and physical activity. These subjective measures are often

complex mixtures of environment and behaviour and may

be subject to reporting biases. The fourth advantage of our

study is that we used a negative control variable—sun-pro-

tection use—which helps control for residual confounding.

Finally, we performed extensive analyses to account for

potential statistical artefacts that can plague gene x envir-

onment interaction studies. For example, we have ac-

counted for the effects of heteroscedasticity—a statistical

term that describes unequal variance in data. Groups of

overweight individuals have a wider variance in BMI than

groups of thinner individuals and these differences in BMI

can create false positive evidence of interaction. Previous

studies have not necessarily accounted for these ‘scale’ ef-

fects and are likely to have overestimated the effects of any

interactions.

The major limitation of our study, as with most previ-

ous studies, is that the majority of the obesogenic variables

were based on self-reported measures, and that these self-

reports were made at the same time as BMI was measured.
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A more objective measure of physical activity demon-

strated similar results to the self-reported physical activity,

but accelerometer-based measures of activity were only

available in one-fifth of the dataset. Other limitations of

our study include (i) the possibility of reverse causality—

genetic variants that predispose to higher BMI may in turn

lead to a stronger association with BMI if they make peo-

ple less active (Supplementary Table 9, available as

Supplementary data at IJE online); (ii) subtle effects—from

Figure 3, we can see that the correlation between BMI gen-

etics and BMI is only slightly larger in the high-risk com-

pared with low-risk environment groups. However, the

differences are still such that carrying an additional 10

BMI-raising alleles can increase weight by up to 3.6 kg in a

high-risk environment compared with 2.8 kg in a low-risk

environment (for a person of average height); (iii) the use

of cross-sectional data, with self-reported measures of the

obesogenic environment made at the same time as BMI

was measured—bias may be introduced by individuals

with higher BMIs trying to lose weight through diet and

exercise; (iv) missing data—not all participants responded

to diet and physical activity questions which may introduce

further bias into the study; individuals not reporting were

more likely to be older, female and with higher BMI; and

(v) the measures of the obesogenic environment were cor-

related with each other and therefore the tests were not in-

dependent. For example, TV watching and sedentary time

were the most correlated measures (r¼ 0.64). We also can-

not rule out collider bias43 affecting the results because in-

dividuals participating in the UK Biobank study are biased

towards those from higher socio-economic positions and

with lower BMIs.

Our results provide an advance for gene x environment

interaction studies. We highlight many of the statistical

and methodological issues that can make interpretation of

GxE results very difficult. One aspect that we can be very

confident about, and that contrasts with the conclusions

from previous studies, is that there is no evidence that one

particular aspect of the environment or behaviour, if

altered, would have a preferential benefit over others. It is

premature to use genetic interaction studies to suggest that

public health measures should be targeted specifically at

fried-food reduction, fizzy-drink consumption or diet in

those genetically predisposed to obesity.8,9 However, our

data suggest that something about the obesogenic environ-

ment accentuates the genetic susceptibility to obesity and

that, of the factors we tested, socio-economic position best

captures the relevant factors.

Supplementary Data

Supplementary data are available at IJE online.
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